[This question paper contains 4 printed pages.]

3046

Your Roll No.

MEC

J

Paper - CE.501

(Advanced Mathematics and Numerical Techniques)

Time: 3 hours Maximum Marks: 100

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer any five questions.

Each question carries equal mark.

 (a) Apply Gauss-Seidel method to solve the system of following equations

$$10x - 2y - z - w = 3$$

$$-2x + 10y - z - w = 15$$

$$-x - y + 10z - 2w = 27$$

$$-x - y - 2z + 10w = -9$$

upto the end of fourth iteration and correct to 5th places of decimals.

(b) Find the Fourier series of the function defined in (-2, 2) as follows:

$$f(x) = 2, -2 \le x < 0$$

= $x, 0 < x \le 2.$ (10,10)

P.T.O.

2. (a) Solve the following system of equations

$$x + 2y + z = 4$$

 $2x - 3y - z = -3$
 $3x + y + 2z = 3$

by Crout's method.

- (b) Expand the function $f(x) = x \sin x$ as a Fourier series in the interval $-\pi \le x \le \pi$. (10,10)
- (a) Find the components of a vector in polar coordinate system whose components in Cartesian coordinate system are x, y and x, y.
 - (b) Show that the contraction of the outer product of the tensors Aⁱ and B_i is an invariant. (10,10)
- 4. (a) Show that $e^{\frac{1}{2}x\left(t-\frac{1}{t}\right)}$ is the generating function of the Bessel's functions.
 - (b) Prove that

$$\frac{d}{dx} \left[J_n^2(x) + J_{n+1}^2(x) \right] = 2 \left[\frac{n}{x} J_n^2(x) - \frac{n+1}{x} J_{n+1}^2(x) \right]$$
(10,10)

5. (a) Show that

$$\int_{-1}^{1} x P_n(x) P_{n-1}(x) dx = \frac{2n}{4n^2 - 1}$$

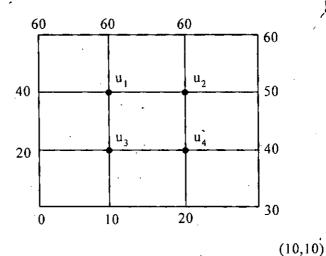
- (b) Using Rodrigue's formula, find the polynomial expression for $P_4(x)$ and $P_5(x)$. (10,10)
- 6. (a) Solve

$$(x^2 - y^2 - z^2)p + 2xyq = 2xz$$

(b) A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various valves of the time t sec. Find the velocity and acceleration of the slider when t = 0.3 sec.

 $t: 0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6$

x: 30.13 31.62 32.87 33.64 33.95 33.81 33.24


(10,10)

7. (a) Given $\frac{dy}{dx} = x^2(1+y)$, y(1) = 1,

$$y(1.1) = 1.233$$
, $y(1.2) = 1.548$, $y(1.3) = 1.979$.

Evaluate y(1.4) by Milne's Predictor-Corrector method.

(b) Using the given boundary valves, solve Laplace equation $\nabla^2 u = 0$ at the nodal points of the square grid shown in figure up to 3rd places of decimal.

