[This question paper contains 6 printed pages.]

3059 Your Roll No.

MEC

J

Paper - CE.559

WATER ENGINEERING DESIGN

Time: 3 Hours Maximum Marks: 100

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any FIVE questions.

All questions carry equal marks.

Assume suitable missing data:

- (a) Explain water quality requirements for domestic water & industrial water. (10)
 - (b) For the given data design a mechanical rapid mix unit. (10)
 - (i) Design flow $-6000 \text{ m}^3/\text{day}$
 - (ii) Detention time 30 secs
 - (iii) Ratio of tank height to diameter - 1.5:1
 - (iv) Impeller diameter to tank diameter ratio 0.4:1

3059

- (v) Speed of Impeller 120 rpm
- (vi) Velocity gradient 650 sec⁻¹
- (vii) Coefficient of drag C_n-1.8 for flat blades
- (viii) Absolute viscosity

 of water 1×10⁻³ NS/m²
 - (ix) Density of water 1000 kg/m³
- 2. (a) Prove that "The surface loading $\left[\frac{Q}{A}\right]$ and not the depth is a measure of effective removal of particles in a sedimentation tank. (10)
 - (b) Design a rectangular sedimentation tank for the following data & also check for resuspension of deposited particles.
 - (i) Flow of water 6000 m³/day
 - (ii) Removal Efficiency expected = 75%
 - (iii) Nature of particles-discrete & non fleccutating
 - (iv) Size of particles to be removed = 0.02 mm
 - (v) Specific gravity of particles = 2.65
 - (vi) Kinematic viscosity of water at 20°C = 1.01×10^{-6} m²/sec
 - (vii) Performance of tank = good (n = 1/4)

Size

(viii) For unigrannular particles K = 0.04

- (ix) Weisbach Darcy friction factors f = 0.03 (10)
- 3. (a) What are the different causes, effects & control of corrosion of pipes. (10)
 - (b) Perform a sieve analysis to transform the run of band sand into usable sand if the effective size is 6×10⁻² cm and uniformity coefficient is 1.5. Analysis of stock sand is

of separation	Cummulative weight	
×10 ⁻² cm	%	
1.2	0,5	
1.5	1.0	
2.0	5.0	
3.0	10	
4.2	25 .	
6.0	40	
8.5	. 60	
12.0	. 75 .	
17.0	90	•
24.0	95	
34.0	100	(10)

P.T.O.

- 4. (a) Briefly explain different types of filters. What are the common problems associated with rapid sand filters? (10)
 - (b) Design a rapid sand gravity filter unit for producing a net filtered quantity of 2 MLD of water. Wash water required is 4% and half hour is lost in washing & returning back to service after a filter run of 24 hrs. Assume rate of filteration as 5000 lit/m²/hr. Design in terms of
 - (i) Number of units

- 5. (a) Explain different types of aerators used in water treatment system with sketches. (10)
 - (b) The result of a 4 m deep column test is as follows

Time (min)	Conc (mg/lit
0 -	300
60	190
90	180
120	150
140	130
200	110
240	80
420	30

What is the percentage removal of particles if the hydraulic loading rate is 35 m³/m²/day. (10)

- 6. (a) Explain briefly the process of removal of iron & fluorides from water. (10)
 - (b) Design a tube settler module for the given data:
 - (i) Average output required = 200 m³/hr
 - (ii) Water lost in desludging = 2% of output
 - (iii) Size of tube 50 mm×50 mm
 - (iv) Length of tube = 1 m
 - (v) Angle of Inclination = 60° with horizontal
 - (vi) Settling velocity $V_s = 120 \text{ m/day}$
 - (vii) Kinematic viscosity = 1×10^{-6} m²/sec
 - (viii) For square section S = 11/8 (10)
- (a) Explain following intake structures with a neat sketches.
 - Dry and wet intake tower
 - Canal intake and valve tower (10)
 - (b) Explain Hardy cross method for water distribution system with a suitable example. (10)

- 8. Write short notes on any four :-
 - (a) Mechanism of disinfection
 - (b) Coagulation & flecculation
 - (c) Taste & odour control
 - (d) Equivalent pipe technique
 - (e) Functions of various types of valves in distribution networks (5×4=20)