[This question paper contains 3 printed pages.]

3064

Your Roll No.

MEC

I.

Paper - CE.606

INSTRUMENTATION

Time: 3 Hours

Maximum Marks: 100

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 is compulsory.

Attempt any four questions from the rest.

Assume suitable missing data, if any.

- (a) Discuss the instruments by which vacuum levels lower than 1 micron can be measured. Give its principal of working and application also.
 - (b) A right angled V notch is employed to measure the discharge. If the head H above the sill is measured as 0.25 ± 0.01 m estimate the discharge if $c_d = 0.60$.
 - (c) A thermistor has a resistance of 9000Ω at the ice point and 500Ω at 100° C. Find its constant and its resistance at 50° C.

- (d) What are the basic component of an instruments?

 Discuss them with flow diagram. Write down the different measurement techniques based on signals.
- (e) With suitable example define the terms Sensitivity precision and accuracy of an instrument.

 (4×5)

- (a) Discuss the uses of Gas chromatography for qualatative analysis of samples. Describe in brief all the important units of a gas chromatography
 - (b) Briefly discuss the factors governing in selecting the detection system in Chromatographic technique.

 Describe with application some of the detection system that can be used in gas-chromatography.
- 3. Write explainatory notes on the following:
 - (i) Nephlometer
 - (ii) N.D.I.R.
 - (iii) pH meter

(iv) Coulometer (4×5)

4. (a) Discuss the instruments used for volumetric analysis of flue gas. Also discuss the working of the instruments with neat diagram. (10)

- (b) What are the different method used for level measurement in the industries? Discuss the principal, working and application of there method. (10)
- (a) With a neat diagram describe the principal working and application of selective radiation pyrometer. (10)
 - (b) With a neat diagram describe the principal working and application of rotameter. (10)
- 6. Write short notes on any .four:
 - (a) Mass Spectrometer
 - (b) Chemilumination method
 - (c) N.M.R.
 - (d) Electrolytical Analysis
 - (e) Electrical method for measurement of temperature (5×4)

This questi	on paper conta	ins 2, printed pa	iges.]
3067		Your Rol	l No
	ME Civil (S	tructural Engg	.) j
Paper	CE.663 - STR	RUCTURAL DY	NAMICS
Time: 3 hoi	ırs	Maximi	ım Marks: 100
(Writ		on the top imm nis question pape	-
	Attempt any	FIVE question	<i>s</i>
•		ns are written required data	~
free	- -	motion for a si stem. What shal imped?	
und	er free vibratio	our of an over on stage, and critically damped	ompare it witl
with a damped	spring of sti I. Ratio of its to	nsisting of a wei ffness 20 N/cn wo consecutive c following for	n is viscously amplitudes is 1
(i)	The natural f	requency of the	system
(ii)	The logarithm	ic decrement	
(iii) The damping	ratio	
(iv) The damped :	natural frequenc	р Э
(v)	The damping	coefficient	(20)
			рто

- 3. (a) What do you understand by 'Dynamic Magnification factor'? Explain briefly. (10)
 - (b) Discuss how an evaluation of damping can be made, at resonance condition, using dynamic magnification factor. (10)
- 4. (a) Explain D'Alembert's principle briefly. (10).
 - (b) Calculate the equivalent stiffness for a model shown below. (10)

- (a) What are different types of waves? Describe briefly. (10)
 - (b) Discuss the half power bandwidth method to evaluate damping of a SDOF system. (10)
- 6. (a) Discuss how effect of dynamic loading is considered using the Duhamel's integral. (10)
 - (b) What is the difference between the forced vibration stage and the free vibration stage?

 Discuss taking an example. (10)
- 7. Write short notes on any two of the following:-
 - (i) Earthquake excitations of buildings
 - (ii) Principle of virtual work
 - (iii) Damping coefficient $(2\times10=20)$