3406

Your Roll No.

M.Tech. / II Sem.

Α

NANO SCIENCE AND NANO TECHNOLOGY

Paper: NSNT-201: Quantum Mechanics

Time : 3 Hours

ida iliisə Maximum Marks: 38

(Write your Roll No. 18th the top immediately 19th . . & on receipt of this question paper.)

Answer any five from the 1st 6 questions and the Tth question is compulsory.

1. Consider a two level system where the kets $|\psi_1\rangle$ and $|\psi_2\rangle$ form an orthonormal basis. Now define a new basis -

$$|\phi_1\rangle$$
 and $|\phi_2\rangle$ by

$$|\phi_1> = \frac{1}{\sqrt{2}}(|\psi_1>+|\psi_2>)$$
 and

$$|\phi_2> = \frac{1}{\sqrt{2}}(|\psi_1> - |\psi_2>)$$

An operator \hat{O} represented in $|\psi_i\rangle$ basis is given by $\hat{O} = \begin{bmatrix} 1 & a \end{bmatrix}$

$$\hat{O} = \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix}$$

Find the representation of \hat{O} in the new basis. Here 'a' is a constant.

[P.T.O.

- 2. Consider a one-dimensional system described by the Hamiltonian $H = \frac{P^2}{2m} + V(x)$
 - a) Show that $(H, x] = -i \hbar P/m$.
 - (b) Find the expectation value of \hat{P} in an eigen state of the given \hat{H} .

Hint: Use the result obtained in (a) to evaluate (b).

3. A particle of mass m is confined within an infinite 1-D well, between x = 0 and x = L. The eigen states of the Hamiltonian are given by

$$\langle x^{\dagger} \phi_n \rangle = \sqrt{\frac{2}{L}} \sin\left(\frac{\pi nx}{L}\right)$$

Where $E_n = \frac{\pi^2 h^2 n^4}{2mL}$ n = 1, 2,

Consider a situation where at time t = 0 the particle is in state $|\psi(t=0)\rangle = \frac{|\phi_1\rangle + |\phi_2\rangle}{\sqrt{2}}$

- (a) Find the time-dependent $|\psi(t)\rangle$
- (b) Calculate the coordinate representation of $|\psi(t)\rangle$, i.e. find $\langle x|\psi(t)\rangle$.
- Check if $|\psi(t)\rangle$ comes back to $|\psi(t=0)\rangle$ after a certain time t_0 . If so determine t_0 .

4. Using the uncertainty relation $\triangle x \triangle p \ge \hbar/2$, estimate ... the ground state energy of 1-D harmonic oscillator.

$$\hat{H} = \frac{\hat{P}^2}{2m} + \frac{mw^2}{2} \hat{x}_{\{i_{j+1},j_{j+1}\}}^2$$
(10)

Given $\langle x \rangle = \langle P \rangle = 0$ for all eigen state of \hat{H} and $\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$ and $\Delta P = \sqrt[4]{\langle P^2 \rangle} - \sqrt[4]{\dot{P} \rangle^2}$.

Hint: Express expectation value of \hat{H} in terms of Δx and ⁹¹⁶ΔP and then use uncertainty relation and minimization 39 condition. 6

In the simultaneous eigen basis of \hat{L}^2 and \hat{L}_z which is represented as |l, m>, obtain the matrix representation of Lx and Ly operator for l = 1 case.

And the basis is given by $\{I L, m = 0, \pm 1 > \}$ (a) Show that, in 1st order time independent

perturbation theory, the production to the in heigen state is forthogonal to the eigen state .bod: itself.

6

(b) Consider a particle of charge 'e' and mass 'm' in a harmonic oscillator potential $V = \frac{1}{2} mw^2 x^2$. Now apply a small electric field of magnitude 'f along the + ve x-axis.

So.
$$H = H_0 + H'$$

= $\frac{\dot{P}^2}{2m} + \frac{1}{2}mw^2\hat{x}^2 + efx$

Treating the electric field perturbatively, calculate the energy correction to n^{th} eigen state in 1^{st} order perturbation theory.

Given:
$$a = \sqrt{\frac{mw}{2h}} \left(\hat{\lambda} + \frac{i \hat{P}}{mw} \right)$$

$$a^{\dagger} = \sqrt{\frac{mw}{2h}} \left(x - \frac{i \hat{P}}{mw} \right)$$
2

7. (a) Consider 1-D harmonic oscillator problem and apply variational method to estimate

The ground state energy-

Trial wave function $\Psi_{\theta}(x, \alpha) = Ae^{-\alpha \alpha^2}$

Given
$$\int x^{2n} e^{-ax} dx = \sqrt{\frac{\pi}{a}} 1.3.5...(2n-1)/(2a)^n$$
, 5

(b) Coven the information of ground state how do we obtain an upper bound to the 1st excited state using variational method.