This question paper contains 4 printed pages.]

Your Roll No.	
Tour Kon No.	******

4325

A

M. Tech./Sem. III CHEMICAL SYNTHESIS AND PROCESS TECHNOLOGIES

Paper---Module-16: Bioactive Compounds of Natural Origin

(Admissions of 2008 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all questions.

- l. (a) (i) Give a reaction showing the presence of one $\beta{\rm -ionone}$ nucleus in vitamin $A_{\rm i}$.
 - (ii) Write down the occurrence and structure of a biologically active geometrical isomer of vitamin A₁.
 - (b) (i) Define the terms apocnzyme and haloenzyme. Which one is biologically active?
 - (ii) Mention important reactions that have been postulated for the biosynthetic conversion of amino-acid into alkaloids.
 - (c) Write down the synthesis of pyridoxine.

P.T.O.

4325 (2.)

- (d) (i) How will you establish the presence of keto-enol system in ascorbic acid?
 - (ii) In the synthesis shown below, give the structures of the compounds A = C.

- 2. (a) (i) Vitamin D₁ exists in the more stable S-trans conformation. How can it be attained?
 - (ii) When exposed to ultraviolet radiation from the sun,
 7-dehydrocholesterol is converted into vitamin D_v. Write the sequence of reactions.
 - (b) Complete the following reaction:

retinal,
$$\frac{NBS}{\text{morpholine (}} \xrightarrow{N \text{ phenyl}} \xrightarrow{P} \xrightarrow{P} \text{ LAH} \xrightarrow{P} \text{Vitamin } A$$

(c) Write important characteristics, regarding the structure of vitamin B_{1/2}.

Or

N-acetyl glucosamine is an important constituent of surface membranes in manimalian cells. How is it synthesized in nature?

- (d) (i) Write down the chemical composition, properties and uses of Aloe vera plant.
 - (ii) Give the chief constituents and uses of the following:
 - (I) eucalyptus oil

(II) clove oil

2, 2, 2, 3

- (a) Write down the enzyme function of vitamin B₁, pyridoxine, vitamin B₁₂ and vitamin D.
 - (b) (i) Why is vitamin B, also called lactoflavin?
 - (ii) What happens when a neutral solution of lactoflavin is exposed to light?

ar .

- (iii) Write the structure of riboflavin and establish that it contains a side chain attached to N-9.
- (c) (i) Write down the usual sources of thiamine. How does it occur in all cells?
 - (ii) $C_{12}H_{18}C_2N_4OS + Na_2SO_3 \rightarrow C_6H_9NOS + C_6H_9N_3O_3S + 2NaCl$ (thiamine) (A) (B)

Give the structures of A and B. How are these fragments united in thiamine? Explain giving suitable reasons.

- (d) Give a possible mechanism for the biosynthesis of any one of the following:
 - (i) cuscohygrine
 - (ii) nicotine.

2, 3, 3, 2

4325 (4)

- (a) Propose a detailed mechanism for decarboxylation of an α-amino acid catalyzed by pyridoxal phosphate.
 - (b) Write a note on the following:
 - (i) Downstream processes
 - (ii) Importance of natural products in drug discovery.
 - (c) Write down the structure of α , β and γ -tocopherols. What happens when each one of them is heated with HI?

Or.

Give the synthesis of y-tocopherol.

- (d) (i) Describe pathways for biosynthesis of a linear polyketide.

 What happens when it is reduced?
 - (ii) Explain the biogenesis of 6-methyl salicylic acid.

3, 2, 2, 2