Your Roll No.

4323

Α

M. Tech./Sem. III CHEMICAL SYNTHESIS AND PROCESS TECHNOLOGIES

Paper-Module-9: Solution Chemistry

Time: 3 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer three questions in all including.

Ouestion No. 1 which is compulsory.

- (a) What are the various ways of achieving selectivity in complexometric titration of a mixture of metal ions? Give examples for each of these
 - (b) For stepwise complexation reaction between metal and ligand derive the relationship

 $\frac{d \log \alpha_{\rm C}}{d \log [{\rm A}]} = {\rm C} - \overline{n} \text{ where } \overline{n} \text{ and } \alpha_{\rm C} \text{ are the formation functions}$ and [A] is free ligand concentration.

IP.T.O.

4323 (2)

(c) For a spectrometric titration

$$S: T \rightarrow P$$

draw the titration curves under the following conditions

- (i) ∈ ⊕_p
- (ii) ϵ , ϵ , $0, \epsilon$, 0
- eiii $\epsilon_{ij} = \epsilon_{ij} + 0, \epsilon_{ij} > 0$
- (a) Define mean molar extinction coefficient ∈. How this has been used by Yotsimirkü for calculation of β₁, β₂ ... β_n values for a complexation reaction between metal M and ligand L.
 - (b) Using $[h_{+}, \{t_i]$, data describe elimination method for finding β_1 and β_2 values for t_i . Land 1/2 complexation reactions between M and t_i .
 - (c) Suggest two methods for simultaneous complexometric estimations of a mixture of Cu Zn in a solution.
- 3 ta) For a back titration of M. and $M_{\rm H}$ in presence of excess EDTA, derive the following relation 6
 - $P_{M_{ij}} = P_{M_{ij}} = \left[\log K_{M_{ij}, 1} + \log K_{M_{ij}, 1} + \log \left[M_{ij}, L \right] + \log \left[M_{ij}, L \right] \right]$
 - (b) Estimate the accuracy in estimation of 10 3 M Zn in presence of 10 10 M/Mg Given $K_{735} = 16.5 \log K_{MgY} + 8.7 p_{Zn}$ trans = 5.6.

-1

4

4. (a) For a cation exchange reaction of the type

Na⁺(R) + Mⁿ⁺
$$\rightarrow$$
 Mⁿ⁺(R) + n (Na⁺)
Show that $\frac{\lambda_0}{\lambda} = \phi$

and this ratio varies as a function of added ligand. λ_0 and λ are the distribution ratio (of metal M^{n+} between resin and solution) in the absence and presence of ligand respectively.

(b) For complexometric titration derive the following titration error formula

$$Error = \frac{4.6 \Delta PM}{(C_M K_{ML})^{1/2}}$$

(c) In the pH-metric method for the determination of stability constants, show that

$$\frac{T_{L} - [L]}{T_{M}} = \frac{\sum_{n=1}^{n-N} n \beta n [L]^{n}}{\sum_{n=0}^{N} \beta_{n} [L]^{n}}$$

Where the terms have usual meanings.