[This question paper contains 4 printed pages.]

3144

Your Roll No.

M.E.

J

POLYMER TECHNOLOGY

Paper - CH.504

(Unit Operations - II)

Time: 3 Hours

Maximum Marks: 100

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions.

All questions carry equal marks.

- Discuss the general principles underlying mass transfer operations employed in chemical process industries.
 Explain the gas absorption and leaching operations with the help of suitable sketches. (20)
- 2. Draw schematic diagrams of any Four of the following:
 - (a) Mixer settler for liquid-liquid extraction
 - (b) Sieve tray column (light liquid dispersed)
 - (c) Bubble cap distillation column
 - (d) Fractionating column with a still
 - (e) Rotary dryer

(5×4)

.P.T.O.

- 3. (a) Explain the Flash vaporisation operation with the help of a sketch. (10)
 - (b) Under constant drying conditions, a wet solid is dried from 30% to 4%. The time taken is 4 hours. The equilibrium moisture content is 2%. Critical moisture content 10%. How long would it take to dry to 7%. All percentages are on dry solid basis. Assume the falling rate period is linear, i.e. rate of drying is proportional to free moisture content. (10)
- 4. An evaporator is operating at atmospheric pressure. It is desired to concentrate the feed from 5% solute to 20% (by weight). At a rate of 5000 kg/hr dry saturated steam at a pressure corresponding to saturation temperature of 399°K is used. The feed is at 298°K and boiling point rise (elevation) i.e. BPE is 5°K. Overall heat transfer coefficient is 2350 W/M²K. Calculate the economy of evaporator and area of heat transfer to be provided.

DATA: Treating solution at pure water and neglecting the BPE:

Latent heat of vaporisation of water at 101.325 KPa and 373°K = 2257 KJ/Kg.

Latent heat of condensation of steam at 399°K = 2185 KJ/Kg

Specific heat of feed = $4.187 \text{ KJ/Kg}^{\circ}\text{K}$ (20)

 (a) Show that the counter current flow principle employed in unit operations gives better result compared to co-current flow of two streams.

(10)

- (b) Water system is a representative system for explaining phase rule and phase equilibria.Explain. (10)
- 6. In an oxygen-Nitrogen gas mixture at 101.3 KPa and 298°K, the concentration of oxygen at two phases 2 mm apart are 10% and 20% by volume respectively. Calculate the flux of diffusion of oxygen for the cases where:
 - (i) Nitrogen is non diffusing
 - (ii) There is equimolar counter diffusion of two gases

Diffusivity of O_2 in N_2 is 1.81×10^{-5} m²/sec. (20)

7. Light oil is being absorbed from a mixture of light oil vapour and air by means of a non volatile absorption oil. The absorber is of plate and bubble cap type. The lean oil entering the absorber contains 0.5% by weight of light oil and the rich oil leaving the absorber contains 5% by weight of the light oil.

The gas entering the absorber contains 2.25% by volume of light oil and scrubbed gas leaves the

absorber containing 0.18% of light oil by volume. The molecular weight of the light oil is 80 and the average molecular weight of Air is 29.

The equilibrium curve for the absorbing oil-light oil mixture at the temperature of operation is represented by equation,

$$Y_i = 0.65X_i$$
, where

Y_i = kg of light oil per kg of light oil free air

X_i = kg of light oil per kg of light oil free absorption oil.

- Calculate (a) The kg of light oil free air to kg of light oil free absorption oil.
 - (b) The number of theoretical plates in absorber solution. (20)
- 8. Write short notes on any FOUR of the following:
 - (a) Venturimeter
 - (b) u-tube manometer
 - (c) Bimetallic thermometer
 - (d) Industrial crystallization
 - (e) Selection of materials of construction for chemical process equipment (5×4)

(100)****