|           | •                                                 |     |
|-----------|---------------------------------------------------|-----|
| [This que | stion paper contains 4 printed pages.]            |     |
|           | Your Roll No                                      | ••• |
| 3249      | J                                                 | ſ   |
|           | M.Sc. / IV                                        |     |
|           | APPLIED PHYSICS—Course IV S-12                    |     |
|           | (Electronics II)                                  |     |
| Time: 3   | Hours Maximum Marks: 10                           | 0   |
|           | (Write your Roll No. on the top immediately       |     |
|           | on receipt of this question paper.)               |     |
|           | Attempt any <b>five</b> questions.                |     |
|           | Explain how optical information is converted int  |     |
|           | electrical information through a Vidicon TV camer |     |
|           | tube? Also explain the concept of scanning an     |     |
|           |                                                   | 8   |
| (b)       | Explain Flicker and how is it rectified?          | 5   |
|           |                                                   |     |

(c) Explain the various components of a composite video signal. What ratio has been set for picture to sync signal and why?

 (a) Discuss the Square-Law technique to extract a baseband signal from amplitude modulated signal.

6

- (b) Distinguish between PAM, PWM and PPM techniques with help of suitable waveforms.
- (c) Explain Adaptive Delta Modulation Technique. 7
- (a) Derive the general expression for FM wave. Also show the relationship between Phase modulation and Frequency modulation.
  - (b) A single-tone FM is represented by the voltage equation as:
    - $v(t) = 12\cos(6 \times 10^8 t + 5\sin 1250 t)$
    - Determine: (i) Carrier Frequency, (ii) Modulating Frequency, (iii) Modulation Index, (iv) Maximum Deviation.
  - (c) Specify the need for modulation. 4
- (a) What do you mean by Multiple Access Techniques?
  Elaborate Reference burst structure and Traffic burst structure used in TDMA.
  - (b) Define EIRP. Derive the expression for free space loss and power received by the receiving antenna during sattelite communication.
  - (c) Define Frame efficiency and TDMA superframe.

4

5. (a) Explain Differential Phase Shift Keying (DPSK). 6

- (b) Differentiate between coherent and non-coherent reception of PSK.
- (c) Explain Binary Amplitude Shift Keying. Give similarities between BFSK and BPSK modulation techniques.
- (a) A silica optical fibre has a core refractive index of
  1.50 and a cladding refractive index of 1.47.

## Determine:

- (i) The critical angle at the core-cladding interface.
- (ii) Numerical Aperture for the fibre.
- (iii) Acceptance angle in air for the fibre. 6
- (b) Explain various types of linear and non-linear scattering losses observed in optical fibres in brief.

14

- 7. (a) Explain the following terms in brief:  $4 \times 4 = 16$ 
  - (i) Nyquist rate and Aliasing.
  - (ii) Numerical Aperture.
  - (iii) Uplink and Downlink frequency.
  - (iv) Modulation Index.
  - (b) A typical PCM system, sampling at 8000 samples/ sec uses 6 bits/word for transmission. Determine the bit rate and Nyquist bandwidth.

3249

(4)

8. Write short note on any four of the following:

 $4 \times 5 = 20$ 

- (i) Sampling theorem.
- (ii) Geostationary orbit.
- (iii) Fibre Splices.
- (iv) Horizontal Sync details for a video signal.
- (v) Differential Pulse Code Modulation.