[This	question	paper	contains	4	printed	pages.]
-------	----------	-------	----------	---	---------	---------

Your Roll No.

3248

J

M.Sc./IV Sem.

APPLIED PHYSICS-IV S-11

(Solid State Theory)

Time: 3 Hours

Maximum Marks: 100

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions.

Assume suitable missing data, if any.

- 1. (a) Differentiate between type-I and type-II superconductors.
 - (b) Explain the basic features of the BCS theory of superconductivity.8
 - (c) Calculate the critical current which can flow through a long thin superconducting wire of aluminium of diameter 10⁻³ m. The critical magnetic field for aluminium is 7.9 × 10³ A/m.
- (a) Define dilation and obtain an expression for it in terms of strain components.

3.

4.

5.

(b)

of this effect.

(b) Define bulk modulus and compressibility and give					
expressions for them in terms of elastic stiffness					
constants. 5					
(c) Discuss elastic waves in cubic crystals and hence					
obtain an expression for a transverse wave in the					
(100) direction.					
(a) What is phonon? Explain. Does a phonon carry					
physical momentum? Why?					
(b) Discuss Debye model of lattice heat capacity and					
show that at high temperatures it approches to the					
classical value. Also obtain Debye ${f T}^3$ approximation					
and discuss the results in different temperature					
regions. 15					
(a) Discuss Kronig-Penney model of movement of					
electron in a periodic field of a crystal. 13					
(b) What are Brillouin Zones? Explain. 7					
(a) Why semiconductors are doped? Giving a suitable					
energy level diagram explain how doping by donors					
improves the conductivity of a semiconductor 7					

What is Hall effect? Explain. Mention few applications

7

- (c) Mobilities of electrons and holes in a sample of intrinsic germanium at 300K are 0.36 m² V⁻¹ s⁻¹. and 0.17 m² V⁻¹ s⁻¹ respectively. If the conductivity of the specimen is 2.12 Ω⁻¹ m⁻¹, estimate the intrinsic carrier density.
- 6. (a) Draw B-H curve for ferromagnetic material and use this to define:
 - (i) saturation magnetization, (ii) remanance, (iii) coercive force. Discuss how the knowledge of the B-H curve of a magnetic material is useful in determining its applications.
 - (b) Differentiate between antiferromagnetic and ferrimagnetic materials. Mention few applications of ferrimagnetic materials.
 8
- (a) What do you mean by polarization in a solid? Name and discuss various types of polarizations. Draw a curve to show the variation of polarization with the applied frequency.
 - (b) Define the terms : (i) dielectric relaxation,
 (ii) dielectric constant and dielectric loss, (iii) Local
 electric field and (iv) luminescence. 2 × 4 = 8

3248 (4)

8. Write short notes on any two of the following:

 $10 \times 2 = 20$

- (a) Josephson effect
- (b) Lattice defects
- (c) Free electron theory of metals
- (d) Effect of temperature on conductivity of metals, semiconductors and insulators.