This question paper contains 8 printed pages]

Roll No.			\prod	TT			
----------	--	--	---------	----	--	--	--

S. No. of Question Paper : 2424

Unique Paper Code : 2362301 F-4

Name of the Paper : Introduction to Operational Research and Linear Programming

Name of the Course : B.Tech. Computer Science/B.Sc. (Hons.) Statistics : Allied Course

Semester : IV

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

This question paper has three sections in all.

Attempt any Five questions from each Section.

All questions carry equal marks.

All Sections are compulsory.

Use of simple calculator is allowed.

Section A

- 1. Discuss any five principles of modeling in operations research.
- Define the term Basis of a vector space. Check whether the given set of vectors [3, 0, 2].
 [7, 0, 9], [4, 1, 2] form a basis of R³ or not.
- Define basic solution of a Linear Programming Problem. Find all basic feasible solutions of the equations given by:

$$2x_1 + 6x_2 + 2x_3 + x_4 = 3$$

$$6x_1 + 4x_2 + 4x_3 + 6x_4 = 2.$$

4. Define a convex set. Examine the convexity of the following set:

$$X = \{(x_1, x_2) \mid x_1 x_2 \ge 1, x_1 \ge 0, x_2 \ge 0\}.$$

Ozark farms uses at least 800 lb of special feed daily. The special feed is a mixture of corn and soybean meal with the following compositions:

	lb per lb of feedstuff					
Feedstuff	Protein	Fiber	Cost (\$/lb)			
Com	.09	.02	.03			
Soybean meal	.60	.06	.90			

The dietary requirements of the special feed are at least 30% protein and at most 5% fiber. Formulate a Linear Programming Problem for Ozark farm to determine the daily minimum-cost feed mix.

6. Consider the following LPP:

$$z = 3x_1 + 2x_2$$

$$x_1 + x_2 \le 4$$

$$x_1^{\cdot} - x_2 \le 2$$

$$x_1, x_2 \ge 0$$

- (a) Determine all the basic solutions of the problem and classify them as feasible and infeasible.
- (b) Show how the infeasible basic solutions are represented on the graphical solution space.

Section B

- 7. Discuss the following special cases that arise in LPP:
 - (a) Degeneracy
 - (b) Infeasible solutions.
- 8. Use graphical method to solve the following LPP:

Maximize

$$z = 3x_1 + 2x_2$$

Subject to:

$$5x_1 + x_2 \ge 10$$

$$2x_1 + 2x_2 \ge 12$$

$$x_1 + 4x_2 \ge 12$$

$$x_1, x_2 \ge 0$$

9. Consider the following system of equations:

$$x_1 + 2x_2 - 3x_3 + 5x_4 + x_5 = 4$$

$$5x_1 - 2x_2 + 6x_4 + x_6 = 8$$

$$2x_1 + 3x_2 - 2x_3 + 3x_4 + x_7 = 3$$

$$-x_1 + x_3 - 2x_4 + x_8 = 0$$

$$x_1, x_2, \dots, x_8 \ge 0$$

2424

(4)

Let x_5 , x_6 , x_7 and x_8 be a given initial basic feasible solution. If x_1 becomes basic, which of the given basic variables must become non-basic at zero level for all the variables to remain non-negative and what would be the value of x_1 in the new solution? Repeat this procedure for x_2 , x_3 and x_4 .

10. Use Big M method to solve the following LPP:

Maximize

$$z = 3x_1 + 2x_2$$

Subject to:

$$2x_1 + x_2 \le 2$$

$$3x_1 + 4x_2 \ge 12$$

$$x_1, x_2 \ge 0$$

11. Describe alternate optimal solutions in LPP. Find any three alternate optimal solution (if they exist) for the following LPP:

Maximize

$$z = x_1 + 2x_2 + 3x_3$$

$$x_1 + 2x_2 + 3x_3 \le 10$$

 $x_1 + x_2 \le 5$
 $x_1 \le 1$

$$x_1, x_2, x_3 \ge 0.$$

12. Solve the following problem by inspection, and justify the method of solution in terms of the basic solutions of the simple method :

$$z = 5x_1 - 6x_2 + 3x_3 - 5x_4 + 12x_5$$

Subject to:

$$x_1 + 3x_2 + 5x_3 + 6x_4 + 3x_5 \le 90$$
$$x_1, x_2, x_3, x_4, x_5 \ge 0.$$

Section C

13. For the linear programming problem given by :

$$Max z = 3x_1 + 2x_2 + 5x_3$$

(Coefficients 3, 2, 5 represent the unit revenue for x_1 , x_2 and x_3 respectively)

$$x_1 + 2x_2 + x_3 \le 430$$
 (Operation 1)
 $3x_1 + 2x_3 \le 460$ (Operation 2)
 $x_1 + 4x_2 \le 420$ (Operation 3)
 $x_1, x_2, x_3 \ge 0$.

The optimal table obtained from simple method is as follows:

Basic	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	Solution
2	4	0	0	1	2	0	1350
<i>x</i> ₂	$\frac{-1}{4}$	1 .	0	$\frac{1}{2}$	$\frac{-1}{4}$	0	100
<i>x</i> ₃	$\frac{3}{2}$	0.	.1	0	$\frac{1}{2}$	0	230
<i>x</i> ₆	2	0	0	-2	1	1	20

where x_4 , x_5 and x_6 are the slack variables for constaints of operations 1, 2 and 3 respectively.

Determine the range of unit revenue for x_1 for which the present solution remains optimal for the given problem.

14. Obtain the dual problem of the following primal problem:

Minimize

$$z = x_1 - 3x_2 - 2x_3$$

Subject to:

$$3x_{1} - x_{2} + 2x_{3} = 7$$

$$2x_{1} + 2x_{2} \ge 12$$

$$x_{1} + 4x_{2} \ge 12$$

 $x_1, x_2 \ge 0, x_3$ is unrestricted.

15. Consider the following linear programming problem:

Maximize

$$z = 2x_1 + 2x_2 + 4x_3$$

Subject to:

$$2x_1 + x_2 + x_3 \le 2$$

$$3x_1 + 4x_2 + 2x_3 \ge 8$$

$$x_1, x_2, x_3 \ge 0.$$

Show that Phase-1 will terminate with an artificial basic variable at zero level. Perform only one iteration at Phase-2.

16. Use dual Simplex Method to solve the given LPP:

Maximize

$$z = -x_1 - 3x_2$$

$$x_1 - x_2 \le 2$$

$$x_1 + x_2 \ge 4$$

$$2x_1 - 2x_2 \ge 3$$

$$x_1, \ x_2 \ge 0.$$

17. Consider the following LPP:

Maximize '

$$z = 5x_1 + 2x_2 + 3x_3$$

Subject to:

$$x_1 + 5x_2 + 2x_3 \le b_1$$

$$x_1 - 5x_2 - 6x_3 \le b_2$$

$$x_1, x_2, x_3 \ge 0$$

The following optimal tableau corresponds to specific values of b_1 and b_2 .

Basic	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	x ₅	Solution.
z	0	а	7	d	e	150
x_1	1	<i>b</i> .	2	. 1	0	30
<i>x</i> ₅	0	c	-8	-1 ·	1	10

Determine the following:

- (a) The right-hand-side values b_1 and b_2
- (b) The elements a, b, c, d, e.
- 18. Discuss economic interpretation of duality.