This q	uestion paper	contains 3	printed	pages]	

Roll No.			İ

S. No. of Question Paper : 2426

Unique Paper Code

: 2172301

F-4

Name of the Paper

: Chemical Bonding (Inorganic Chemistry)

Name of the Course

: Allied Course : Physics/Electronics

Semester

: IV

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions in all.

Question No. 1 is compulsory and carries 15 marks

Attempt any five questions from Question.

No. 2 to Q. No. 8, each of which carries 12 marks.

1. Explain the following:

- (a) Which molecule has higher dipole moment NH3 or NF3?
- (b) BeF₂ is linear but SF₂ is angular although both are triatomic.
- (c) N₂ molecule is diamagnetic while O₂ is paramagnetic.
- (d) H₂O is liquid and H₂S is gas at room temperature.
- (e) Arrange the chlorides of alkali metals in decreasing order of their melting points.
- (f) MgSO₄.7H₂O is soluble in water whereas BaSO₄ is insoluble.

6×2.5≠15

2.	Define Lattice energy. Calculate the lat	tice energy of NaCl crystal from the foll	owing data by			
	the use of Born-Haber cycle :		4,8			
	Sublimation Energy (S)	$= 108.7 \text{ kJ mol}^{-1}$				
	Dissociation Energy Cl ₂ (D)	$= 225.9 \text{ kJ mol}^{-1}$				
	Ionization Energy for Na(g) (l)	$= 489.5 \text{ kJ mol}^{-1}$				
	Electron Affinity for Cl(g) E	= -351.4 kJ mol ¹				
	Heat of formation of NaCl (ΔHf)	= -414.2 kJ mol ⁻¹				
3. ·	(a) What do you understand by hyb	ridization ?				
	(b) How many types of hybridization	n? Explain with examples.	3,9			
4.	Write the postulates of valence bond	theory. Predict the shape of the followi	ng molecules/			
	ions using VSEPR theory:		4,4×2			
٠.	XeF ₄ , C	CIF_3 , NH_4^+ , H_2O				
5.	(a) Differentiate between atomic orb	a) Differentiate between atomic orbitals and molecular orbitals.				
	(b) Draw the molecular orbital diagram	n and calculate the bond order of the follow	ing molecules :			

6. (a) What is doping the crystals? Explain for extrinsic conduction.

 F_2 and CO.

(b) Discuss the defects present in stoichiometric compounds.

2×6

4,2×4

(3) 2426

7. (a) Define Hydrogen bonding. How many types of hydrogen bonding.

(b) Why ice floats on water?

8,4

8. Write short notes on any four:

- (a) Bent's rule
- (b) Fajan's rule
- (c) Hexagonal closed packing
- (d) Equivalent and non-equivalent hybrid orbitals

(e) London forces.

4×3

2426