This question paper contains 7 printed pages]	
Roll No.	
S. No. of Question Paper : 6238	
Unique Paper Code : 222403 D	
Name of the Paper : Numerical Analysis [PHHT-414]	•
Name of the Course : B.Sc. (Hons.)	•
Semester : IV	
Duration: 3 Hours Maximum M	arks: 75
(Write your Roll No. on the top immediately on receipt of this question paper.)	•
Question No. 1 is compulsory.	
Attempt any <i>four</i> questions from the rest. Scientific calculators (non-programmable) are allowed.	
Begin answering each question on fresh page of the answer-sheet.	•
1. Attempt any five questions.	5×3=15
(a) Define truncation error and round off error.	h
(b) What are transcendental and algebraic equations? Give one example of each(c) Give geometrical interpretation of trapezoidal rule.	
(d) Give geometrical interpretation of Newton-Raphson method.	
	P.T.O.

- (e) Find the minimum number of iterations required to attain an accuracy of 0.001 in an interval [1, 2] using bisection method.
- (f) Distinguish between Newton-Raphson method and Secant method giving at least three differences between them.
- (g) Find the eigen values and normalized eigen vectors of the matrix:

$$egin{pmatrix} 2 & \sqrt{2} \ \sqrt{2} & 1 \end{pmatrix}.$$

2. (a) Using Gauss-Seidel method and the first iteration as (0, 0, 0), calculate the next three iterations for the solution of the system of equations:

$$5x - y + z = 10$$

$$2x + 8y - z = 11$$

$$-x + y + 4z = 3.$$

(b) Find the largest (dominant) eigen value of the matrix:

$$egin{pmatrix} 1 & 3 & -1 \ 3 & 2 & 4 \ -1 & 4 & 10 \end{pmatrix}$$

(c) Find a real root of the equation:

$$x^3-5x-7=0$$

using secant method. (Three interation).

3×5=15

3. (a) Construct the dividend difference table for the data:

X	$\mathbf{F}(\mathbf{x})$
0.5	1.625
1.5	5.875
3.0	31.0
5.0	131.0
6.5	282:125
8.0	521.0

Hence find the interpolating polynomial and an approximation to the value of F(7).

(b) The following table contains data representing a polynomial of degree 5. In the table \vec{y} at x = 3 is in error. Correct the error:

x	y
0	1
1	2
2	33
3	254
4	1054
5	3126
6	7777

(c) Find the first and second derivative of f(x) at x = 1.5 from the following tabulated values:

$$x$$
 $f(x)$

1 3.23

1.5

3.19

2

3.0

2.5

2.91

3

2.81

Compute the result upto two places of decimal.

3×5

4. (a) Evaluate:

$$\int_{0}^{1} \frac{dx}{1+x^2}$$

using Simpson's rule for n = 4, correct to five decimal places.

(b) Evaluate the value of integral using Gauss-Legendre's three point formula (n = 2) correct upto five decimal places for the following:

$$\int_{-1}^{1} e^{x} dx$$

(c) Derive second order Runge-Kutta method.

3×5

P.T.O.

5. (a) Using Euler's method find the approximate value of y when x = 0.3:

$$\frac{dy}{dx} = x + y^2;$$

$$y(0) = 1$$
 and $h = 0.1$.

(b) Fit a quadratic function to the following data points:

$$x$$
 $y(x)$

(c) The distance covered by a car in a given time is tabulated below:

Time	Time Distance Covered	
(mins)	(Km)	
10	12	

16 27

20

18 37

Find the speed and acceleration of the car at time = 10 min.

3×5

- 6. (a) What is truncated approximate value of $\frac{\pi}{4}$ upto four significant digits? Calculate the absolute and relative errors due to truncation and due to systematic rounding. Take actual value of π as $\frac{22}{7}$ and approximate value of $\frac{\pi}{4}$ as 0.7854.
 - (b) Find the roots of the equation:

$$x \sin x + \cos x = 0$$

to three decimal places by Newton-Raphson method.

(c) Describe Gram-Schmidt orthogonalization process.

3×5