This question paper contains 4 printed pages]
Roll No. \square
S. No. of Question Paper : 7846

Unique Paper Code : 2351101
F-1
Name of the Paper : Calculus-I [DC-1.1]
Name of the Course . : B.Sc. (Hons.)
Semester : I
Duration : $\mathbf{3}$ Hours
(Write your Roll No. on the top immediately on receipt of this question paper.)
Attempt Five questions from each Section.
All questions carry equal marks.

Section I

1. If

$$
y=x \log \left(\frac{x-1}{x+1}\right)
$$

prove that :

$$
\frac{d^{n} y}{d x^{n}}=(-1)^{n}(n-2)!\left[\frac{x-n}{(x-1)^{n}}-\frac{x+n}{(x+1)^{n}}\right]
$$

2. Find constants a and b that guarantee that the graph of the function defined by :

$$
f(x)=\frac{a x+5}{3-b x}
$$

will have a vertical asymptote at $x=5$ and a horizontal asymptote at $y=-3$.
3. Find:

$$
\lim _{x \rightarrow 0}\left(e^{x}-1-x\right)^{x}
$$

4. Suppose a manufacturer estimates that, when the market price of a certain product is p, the number of units sold will be :

$$
x=-6 \ln \left(\frac{p}{40}\right) .
$$

It is also estimated that the cost of producing these x units will be :

$$
C(x)=4 x e^{-x}+30
$$

(a) Find the average cost, the marginal cost, and the marginal revenue for this production, process.
(b) What level of production x corresponds to maximum profit?
5. Compute :

$$
\int_{0}^{\pi / 3} \sin ^{4} 3 x \cos ^{3} 3 x d x
$$

6. Trace the polar curve $r=\cos 2 \theta$.

Or

Find the interval of increase and decrease and of concavity for the function :

$$
f(x)=4+\frac{2 x}{x-3}
$$

Also find the vertical and horizontal asymptotes of this function, if any.

Section II

7. Derive the formula for the volume of a right pyramid whose altitude is h and whose base is a square with sides of length a.
8. Use the method of cylindrical shells to find the volume of the solid generated when the region R enclosed by the curves :

$$
x y=4 \text { and } x+y=5
$$

is revolved about the x-axis.
9. Find the area of surface generated by revolving the curve C :

$$
x=2 \sqrt{1-y},-1 \leq y \leq 0
$$

- about the y-axis.

10. Find the equation of the ellipse that has its foci at $(2,1)$ and $(2,-3)$ and which has the major axis of length 6 .
11. By rotating the coordinate axes remove the $x y$-term from the equation $x y=-9$. Hence or otherwise name the conic represented by the equation.
12. State the reflection property of Hyperbola. Find the equation of the hyperbola whose vertices are at $(2,4)$ and $(10,4)$ and the foci 10 units apart.
, Section III
13. Find the arc length of the parametric curve, without eliminating the parameter, given by :

$$
\begin{gathered}
x=\cos t+t \sin t \\
y=\sin t-t \cos t \\
\\
0 \leq t \leq \pi
\end{gathered}
$$

14. Test if the vector function $\mathbf{F}(t)=\left(t^{2}-t, \cos t, \sin t^{2}\right)$ over $[-\pi, \pi]$ is smooth.
15. (i) Show that if the non-zero vector function $\mathbf{F}(t)$ is differentiable and has constant length, then $\mathbf{F}(t)$ is orthogonal to the derivative vector $\mathbf{F}^{\prime}(t)$.
(ii) If

$$
\mathbf{G}=\mathbf{F} .\left(\mathbf{F}^{\prime} \times \mathbf{F}^{\prime \prime}\right)
$$

what is \mathbf{G}^{\prime} ?
16. At what angle (to the nearest tenth of a degree) should a projectile be fired from ground level if its muzzle speed is $167.1 \mathrm{ft} / \mathrm{s}$ and the desired range is 600 ft ?
17. Find the curvature and the radius of curvature of the vector function :

$$
r(t)=3 \cos t i+4 \sin t j+t k
$$

at the point where $t=\pi / 2$.
18. At a certain instant, the velocity and acceleration of an object are given by $(5,-1,2)$ and (1, 0, -7). Find the tangential and normal component of the velocity and acceleration at this instant.

