[This question paper contains 5 printed pages.]

Your Roll No. ...

1365

B.Sc. (Hons.)/I

A

BIOCHEMISTRY - PAPER I

(Physical Chemistry)

(Admissions of 2000 & onwards)

Time: 3 Hours Maximum Marks: 60

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all, including Question No. 1 which is compulsory. Log tables and graph papers are allowed.

- 1. Answer the following briefly (ANY EIGHT)
 - (a) Spontaneous reactions need not be instantaneous.

 Explain
 - (b) Higher the activation energy of a reaction, slower is the reaction. Explain.
 - (c) Why does a real crystal have more entropy than an ideal crystal?
 - (d) Explain why the solubility of a salt is affected by the presence of a common ion?

P.T.O.

- (e) Differentiate between first order and pseudo-first order reactions.
- (f) Differentiate between Extensive and Intensive variables with suitable examples.
- (g) Why KCl solution is used in Salt bridge?
- (h) Define Buffer Capacity and Buffer Index.
 - (i) Substances like charcoal and silica gel are used to create high vaccum. Explain.
 - (j) Electrolysis of molten NaCl yields Na metal at the cathode but electrolysis of aqueous NaCl gives hydrogen gas at the cathode. Why? (2×8=16)
- (a) Derive an expression for the rate constant of first order reaction. Show that the half life period is independent of initial concentration. (4)
 - (b) Discuss the collision theory of Bimolecular reactions. Why is the theory applicable to reactions involving simple gaseous molecules? (3)
 - (c) The values of rate constants for reaction

$$2HI \rightleftharpoons H_2 + I_2$$

were observed as $3.0 \times 10^{-5}~\text{mol}^{-1}\text{dm}^3\text{s}^{-1}$ and $2.5 \times 10^{-3}~\text{mol}^{-1}\text{dm}^3\text{s}^{-1}$ at 357°C and 447°C , respectively. Calculate the $E_{\text{activation}}$ for forward and backward reaction. Given

$$\Delta H = 15.5 \text{ kJ mol}^{-1}$$
. (4)

3. (a) Derive Wadden's rule. On the basis of this explain why lonic molar conductivity at infinite dilution increase in the order

$$Li^+ > Na^+ > K^+ > Rb^+$$
 (4)

- (b) Explain how the conductometric measurements can be employed for the determination of
 - (i) Degree of dissociation of a weak electrolyte
 - (ii) Solubility and Solubility Product of a Sparingly Soluble Salt (4)
- (c) State Kohlrausch's law of independent migration of ions.

Given the following $\Lambda^{\infty}/\Omega^{-1}$ cm² mol⁻¹ values at 25°C; AgNO₃ 133.4; KCl 149.9; KNO₃ 144.9. What is the molar conductivity at infinite dilution of AgCl?

- 4. (a) What is an acid-base indicator? How does its colour change with change in H⁺ ion concentration of the solution? (4)
 - (b) Explain the nature of titration curve obtained in the titration involving weak acid and strong base. What would be the choice of a suitable indicator for the same?
 (3)

- (c) The solubility of CaF_2 in water at 20°C is 15.6×10^{-3} g/dm³ of solution. Calculate the solubility product of CaF_2 (mol wt of $CaF_2 = 78$ g mole⁻¹). (4)
- 5. (a) The E.M.F. of the Standard Weston cell written as

Cd(Hg), CdSo₄. 8/3 H₂O(S)/CdSo₄(Sat)/Hg₂So₄(S), Hg in which the cell reaction is

- Cd(Hg) + Hg₂So₄(S)+8/3H₂O(I) \rightleftharpoons CdSo₄. 8/3H₂O(S) + 2Hg(I) is 1.0185 V at 25°C. Calculate Δ G°, Δ S° and Δ H° for the cell reaction if $(\partial$ E°/ ∂ T)_P for the cell is 5.00 × 10⁻⁵ VK⁻¹. (4)
 - (b) Differentiate between Homogeneous and Heterogeneous catalysis. Explain the following on the basis of Heterogeneous catalysis
 - (i) Active centres
 - (ii) The action of catalytic poisons (4)
 - (c) Discuss the applications of adsorption. (2)
 - (d) What are redox indicators? (1)
- 6. (a) Derive the Nernst equation giving the effect of concentration of surrounding electrolyte on the electrode potential. (3)

- (b) One mole of an ideal monoatomic gas at 27°C expands reversibly and adiabatically from a volume of 10 dm³ to 20 dm³. Calculate the values of
 - (i) q (ii) ΔE (iii) W and (iv) ΔH (4)
- (c) Set up a Born Haber cycle to find the lattice energy of NaCl crystal.

Given $\Delta H_f^{\circ}(NaCl) = -410.87 \text{ kJ mol}^{-1}$ I.E. of Na = 495.8 kJ mol}-1, EA of chlorine = 365.26 kJ mol}-1 Sublimation enthalpy of Na = 317.57 kJ mol}-1 Dissociation enthalpy of $Cl_2(g) = 241.84 \text{ kJ mol}^{-1}$ (4)

- 7. (a) Write short notes on any three:
 - (i) Osmotic Pressure
 - (ii) Steady State approximation
 - (iii) Glass Electrode
 - (iv) Principles for UV and NMR spectra
 - (v) Donnan Equilibrium (3×3)
 - (b) Calculate pH of a solution 10⁻⁷ MHCl. (2)