This ques	stion pa	aper cont	ains 4+2	printed p	ages]								
					R	oll No.				Ė			
S. No. of (Questic	on Paper	: 8655				_	:			<u> </u>		
Unique Pa	aper Co	ode	: 24910	1						C			
Name of the	he Pap	er	: BCHT	7-101 : Bi	omolecu	les							
Name of the	he Cou	ırse	: B.Sc. (Hons.) B	io-Chem	istry Pa	rt I						
Semester			: I					,					
Duration:	3 Hou	rs	•							Maxi	imum	Mark	s:75
	(Write	your Roi	l No. on i	the top im	mediately	y on rece	eipt of	this q	quest	iọn po	aper.)		
		Attemp	t <i>five</i> que	stions in	all. Que	stion No	o. 1 is	comp	pulso	ory.			
		Use	of scient	ific calcu	lator/log	tables m	nay be	allow	ved.				
1. (A)	Fill i	n the bla	nks :							,		-	8
	(i)		***********	i	s the bio	logical a	active	form	of fo	olate.	-		
	(ii)	Bees wa	x is rich	in	••••••	••••••	*****						
	(iii)	***********	••••••••••••	i	s the mo	ost abun	dant c	lass c	of RI	NA.			
	(iv)	***********	••••••	is	s the mu	co polys	acchar	ide fo	ound	prim	arily	in co	rnea.
	(v)	***********	•••••••	i	s an imi	no acid.						٠	
	(vi)	Steroids	are deriv	atives of	••••••	••••••	•••••••	•••••		,			
	(vii)	***********	******************	is	s the mo	st abund	lant po	lysac	char	ide in	the	biospl	here.
	(viii)	*************	*******************************	i	s an ami	ino acid	that a	bsort	os at	280	nm.		
		•									•	P.	.T.O.

		(2)	0000
(B)) Give	an example of:	8
	(i)	A lipid abundant in myelin sheath.	
	(ii)	Biologically active form of niacin.	
	(iii)	A standard amino acid that can link the polypeptide chains covalently.	
	(iv)	An enantiomer of α D-glucose.	
	(v)	A bio-molecule other than nucleic acid that has phosphodiester bonds.	
	(vi)	An amino acid that can be phosphorylated.	
	(vii)	Pro-vitamin D.	
	(viii	An epimeric pair of sugars.	
(C) Give	e one significant contribution of the following:	3
	(i)	E. Chargaff	
•	(ii)	Emil Fisher	
	(iii)	D. Hodgkin.	
E	kplain v	vhy?	14
(i)	A fi	eshly prepared solution of glucose on standing shows a change in optical	otation.

(ii) Fructose on reduction gives a mixture of mannitol and sorbitol.

comparable aliphatic acids.

(iii) The \alpha-carboxyl group of amino acid is a stronger acid than the carboxylic group of

2.

Alkali denaturation of DNA is preferred over acid denaturation. Coconut oil contains low percentage of unsaturated fatty acids yet it has low melting point. (vi) Population that subsists on a corn rich diet often suffers from pellagra. (vii) Elaidic acid has a higher melting point than oleic acid. Write the reactions (along with structures) involved (any seven): 14 · (i) Action of alkali on RNA. Glucose is treated with phenyl hydrazine. (ii) (iii) Formation of acrolein from glycerol. Alanine is treated with ninhydrin reagent. (v) Cytosine is reacted with nitrous acid. (vi) Synthesis of hexose from a pentose. (vii) Cystine is treated with β -mercaptoethanol. (viii) Methionine is oxidized with performic acid. (ix) Phosphatidyl choline (PC) is boiled with alkali. Glucose is treated with conc. HNO3. Draw the structures (any 14): 14 16:1^{∆11} *(i)*

3.

	(iv)	D-glucuronic acid
	(v)	Psuedouridine
	(vi)	Deoxycholic acid
	(vii)	Ganglioside GM1
•	(viii)	Lysolecithin
	(ix)	γ-carboxy Glutamic acid (Gla)
	(x)	A-T base pair
	(xi)	Citrulline
	(xii)	Mono galactosyl diacyl glycerol
	(xiii)	Retinol
	(xiv)	Arachidonic acid
	(xv)	Methylcytosine
	(xvi)	Cholesterol
	(xvii) Melibiose.
5.	(A)	What is the approximate number of amino acid residues present in a protein of
		MW 180 kilodaltons (kD) ?

	(B)	Define Iodine number. A fa	t has low iodine number and high saponification number. Wh	ıat
		do you infer from this sta	tement ?	3
	(C)	Explain why the shape formaldehyde?	of titration curve of glycine change in the presence	of
	(D)	Name the major types of	RNA in a eukaryotic cell and indicate their roles.	5
6.	(A)	Match the vitamin with the	eir characteristic:	6
		Vitamin	Characteristic .	
		(1) Vitamin B ₁₂	(a) A carrier of acyl groups	
		(2) Niacin	(b) Its deficiency can be induced by consuming raw eg	gs
		(3) Folic acid	(c) Many animals synthesize it from glucose	
		(4) Ascorbic acid	(d) Deficiency causes pernicious anemia	
		(5) Pantothenic acid	(e) Can be synthesized from a standard amino acid	
		(6) Biotin	(f) Has PABA in its structure.	
•	(B)	Indicate any two roles of	waxes.	2
	(C)	A disaccharide containing of	nly glucose was exhaustively methylated and acid hydrolyze	đ.
		The only products obtained	d were 3, 4, 6 tri O-methyl D-glucose and 2, 3, 4, 6 tetr	а
		O-methyl glucose. Deduce	the structure of disaccharide.	4
	(D)	Nucleosides are more solul	ole in water than corresponding bases. Explain.	2
			PTC	`

(6) 8655

7. Compare the following pairs:

3,3,3,2.5,2.5

- (i) Z-DNA and B-DNA
- (ii) Amylopectin and glycogen
- (iii) Plant and animal sterols
- (iv) Racemic mixture and meso form
- (v) Androgen and estrogen.
- 8. (A) Write short notes (any three):

12

- (i) Role of Lipoproteins
- (ii) Cell wall structure in gram positive bacteria
- (iii) Biologically active peptides
- (iv) Blood group polysaccharides.
- (B) Chargaff's rules are not universal. Explain.

2

8655

6

200