his question paper contains 4 printed pages]	
Roll No.	
. No. of Question Paper : 8656	_
Inique Paper Code : 249103	•
Tame of the Paper : BCHT-102: Biophysics	•
ame of the Course : B.Sc. (Hons.) Bio-Chemistry Part I	
emester : I	
uration: 3 Hours Ma	ximum Marks: 75
(Write your Roll No. on the top immediately on receipt of this question	paper.)
Attempt five questions in all. Question No. 1 is compulsory.	•
Use of scientific calculator/log tables may be allowed.	
(A) Indicate whether True or False with justification:	(9×2=18)
(i) Fluorescent molecules are generally flexible molecules.	
(ii) Gamma rays are used for crystallographic diffraction studies.	
(iii) A tungsten halogen lamp is used in UV-visible spectrophotome	try.
(iv) The triplet state is lower in energy than singlet state.	
(v) Increasing magnification improves resolution.	
(vi) Phase contrast microscopy can be used to study living cells.	
(vii) Osmosis and diffusion involve the same principles.	
(viii) ¹ H NMR spectra of proteins show no change on denaturation.	
(ix) Treatment of DNA with DNAse results in an initial increase in	viscosity.
	P.T.O.

(B) Give an example each of the following:

 $(\frac{1}{2} \times 2 = 1)$

- (i) Extrinsic fluor.
- (ii) Paramagnetic element.
- 2. Differentiate between the following using relevant example:

 $(7 \times 2 = 14)$

- (i) Scanning and transmission electron microscopy.
- (ii) Fluorescence and phosphorescence.
- (iii) DPM and CPM in radioactivity measurements.
- (iv) CD and ORD spectorscopy.
- (v) Differential and gradient centrifugation.
- (vi) Hyperchromic and hypochromic effects in DNA.
- (vii) Extrinsic and intrinsic fluors.
- 3. (A) Schematically represent a spectrophotometer and label the various parts. (5,5,4)
 - (B) The molar extinction coefficient of benzene is 100 M⁻¹ cm⁻¹ at 260 nm.
 - (i) What concentration would give an absorbance of 1.0 in a 1 cm cuvette at 260 nm.
 - (ii) What concentration would allow 1% of 260 nm light to be transmitted through a 1 cm cell? Assume that Lambert Beer's law is obeyed.
 - (C) Explain why double beam spectrophotometers are more useful than single beam ones.

- 4. (A) Draw a simple geometric construction to deduce Bragg's law of diffraction. (5,4,5)
 - (B) What is the purpose of growing protein crystals in the presence of heavy atoms like Cu, Co, for X-ray diffraction strudies?
 - (C) How are neutron diffraction studies complementary to X-ray diffraction studies?
 - 5. Explain the following statements/observations:

 $(7 \times 2 = 14)$

- (i) Water forms nearly spherical droplets on the surface of a freshly waxed car but no beads are formed on a clean windshield.
- (ii) In infrared spectroscopy aqueous solutions of samples cannot be used.
- (iii) Fluorescence emission always has a longer wavelength than incident light.
- (iv) Dark field microscopy is helpful in examining cells that are difficult to see in bright light.
- (v) Most polarimeters have two Nicol prisms.
- (vi) Use of A₂₈₀ for proteins is subject to interference by other biomolecules.
- (vii) Reverse osmosis is commoly used in the purification of drinking water.
- 6. Write briefly the principles involved in the following techniques:

(2,3,3,3,3)

- (i) 1H NMR
- (ii) β-scintillation counters
- (iii) Raman spectroscopy
- (iv) Flow cytometry
- (v) Confocal microscopy.

7.	(A)	Indicate which technique would be useful to study the following and w	hy ?
		(i) Cu ²⁺ binding to cytochrome oxidase (a protein).	
		(ii) Brain maps.	
		(iii) Bond structure of various groups in a molecule.	
		(iv) Location of Trp in a protein (internal or external).	
		(v) Chirality of a molecule.	
	(B)	Define the following terms:	
		(i) Diffusion coefficient	
		(ii) Sedimentation coefficient	
		(iii) Molar specific rotation	
	,	(iv) Quantum yield	
	•	(v) Specific viscosity.	
	(C)	Describe an experiment to determine the surface tension of a liquid.	(5,5,4)
8.	Writ	e short notes on:	(3,3,4,4)
•	(i)	Osmosis in biological systems	. •
	(ii)	Prebiotic earth	
	(iii)	Radiation hazards	
	(iv)	Carbon dating.	
865 6	;	4	200
			•