[This question paper contains 8 printed pages.] Your Roll No. 989 B.Sc. (Hons.) / I \mathbf{C} BIOCHEMISTRY - Paper V Introductory Biology (Admissions of 2000 and onwards) Maximum Marks: 60 Time: 3 Hours (Write your Roll No. on the top immediately on receipt of this question paper.) Attempt five questions in all, including Q. No. 1 which is compulsory. (a) Indicate whether each of the following pairs of 1. sugars are best described as enantiomers. diastereomers, epimers or anomers: ii) D-allose & D-talose (ii) D-galactose & D-mannose

> (b) Arrange the following fatty acids in the order of their increasing melting point: Oleic acid, stearic acid, linoleic acid, palmitic acid and linolinic acid. (2)

ciii L-fructose & D-fructose

(iv) α-D glucose & β-D glucose

P.T.O.

(2)

- (c) What is the approximate molecular weight of a protein with 682 amino acid residues? (2)
- (d) Polysaccharides do not give positive Fehlings's test, why? (2)
- (e) In the presence of HCHO, the shape of the titration curve of glycine changes. How does this observation support the zwitterionic structure of amino acids? (4)
- (f) Calculate the pl of glutamic acid. The pKa of the three functional groups capable of donating protons are pK = 2.19: pK_s = 9.67 and pK_g = 4.25. (2)
- (g) Consider two hexoses. D-galactose and D-glucose.

 Both of them exist as six-membered rings (pyranose form). How many disaccharides are theoretically possible? (2)

2. Explain Why?

- (i) DNA cannot be hydrolyzed by dilute alkali.
- (ii) Arachidonic acid is not an essential fatty acid in animals.
- (iii) Kiliani-Fisher synthesis yields two different sugars starting from a given precursor.

- (iv) The α-carboxyl group of an amino acid is a stronger acid than the carboxyl group of corresponding aliphatic acids.
- (v) Sperm whales in spite of their weight are able to adjust with ease both at the surface and in deep sea waters.
- (vi) Populations that subsist on a corn rich diet often suffer from pellagra.
- (vii) Trehalose does not exhibit mutarotation.
 (1.5 < 6+2)</p>
- 3. Give an example of the following biomolecules:
 - (i) An amino acid found in proteins that can be converted to another amino acid on treatment with a strong base.
 - (ii) A biomolecule other than nucleic acids with phosphodiester bonds.
 - (iii) A biologically active product derived from tryptophan.
 - (iv) A lipid with signal transducing activity.
 - (v) A modified base in t-RNA.
 - (vi) A structural polysaccharide.

(vii) Pro vitamin D	
(viii) A plant sterol.	
(ix) A deoxy hexose.	
(x) Amino acid(s) that is responsible for the UV absorption by proteins.	
(xi) An or3 series of fatty acid. (1×11)	
4. (a) Fill in the blanks:	
(i) is a polysaccharide in insect exoskeleton and is made up of repeating units.	
(ii) is a vitamin that contains glutamate residues.	
(iii) In nucleic acids sugars are linked to the base by linkage.	
(iv) The predominant constituent of lung surfactant is	
(v) is a methyl donor in biological reactions.	
(vi) gives a vellow color with ninhydrin	

reagent.

(1×6)

- (b) Define the following terms:
 - (i) Zwitterion
 - (ii) Saponification number
 - (iii) Essential amino acids.
 - (iv) Homoglycans
 - (v) Lipoproteins (1×5)
- 5. (a) Indicate whether each of the following statements is true of false. If you think the statement is false. explain why.
 - (i) L- ribitol-1 phosphate is identical with D- ribitol-5 phosphate.
 - (ii) Threonine has only one asymmetric carbon atom.
 - (iii) Nucleosides are less soluble in water than their corresponding bases.
 - (iv) Fructose on reduction gives a mixture of mannitol and sorbitol.
 - (v) In PUFA, the double bonds are generally unconjugated.

- (vi) All linear polymers of D glucose can be digested by humans.
- (vii) mRNA sequence is complementary to the template DNA. (**7)
- (b) Give one significant contribution of the following investigators:

 (1×4)

- (i) C. Funk
- (ii) Emil Fisher
- (iii) Erwin Chargaff
- (iv) Linus Pauling
- 6. Write the structures of the following:
 - (i) Sialic acid
 - (ii) Cyclic AMP
 - (iii) Isomaltose
 - (iv) Histidine at pH 4.9
 - (v) Cardiolipin
 - (vi) A deoxy hexose
 - (vii) Erucic acid
 - (viii) Pseudo uridine

707		
	(ix) Glutanic acid	
	(x) Galactitol	
	(xi) Leucotriene LTB ₄ (1)	×11)
7.	Compare the following pairs:	
	(i) Essential and non-essential amino acids.	
	(ii) Plant and animal sterols.	
	(iii) Phospholipids and neutral fat.	
	(iv) Starch and cellulose.	
	(v) B-and Z-DNA. (2×	4+3)
8.	(a) Write the outcome of the following reactions (structures):	draw
	(i) Glucose is treated with concentrated I-	INO ₃
	(ii) Methionine is oxidized with performic a	
		(1)
	(iii) Alanine is reacted with Sanger's reage	ent (1)
	(iv) RNA is treated with alkali.	(1.5)
	(v) Glucose is synthesized starting D-arabinose.	from (1.5)
	Р.	T.O.

- (vi) Oleic acid is reacted with KMnO₄ under vigorous conditions.(1)
- (vii) Xylose is treated with hydroxyl amine. (1)
- (b) Name the coenzyme that best describes the statements below:
 - (i) It is the most versatile one carbon donor.
 - (ii) It is required for intra molecular rearrangements.
 - (iii) It acts as an electron sink to promote catalysis. (1×3)