This question paper contains 5 printed pages.]

Your Roll No.

B.Sc. (Hons.)/II

BIOCHEMISTRY — Paper X

(Metabolism of Amino Acids, Nucleotides and Porphyrins)

(Admissions of 2000 and onwards)

Time: 3 Hours

Maximum Marks: 60

(Write your Roll No: on the top immediately:

on receipt of this question paper.)

Attempt five questions in all,
including Question No. 1 which is compulsory.

- 1. (a) Explain the following:
 - (i) The role of v glutamyl cycle in the uptake of amino acids.
 - (ii) 5-methyl tetrahydrotolate transfers a methyl group in methionine synthesis, but all other biological methyl transfers involve 5-adenosyl methionine.
 - (iii) Liver damage causes jaundice.
 - (iv) The synthesis of urea is irreversible with large negative ΔG .

1374 (2)

- (v) Sulfonamide drugs do not interfere with human purine synthesis.
- (vi) Cysteine is an essential aminoacid in individuals consuming a diet devoid of methionine. $2 \times 6 = 12$
- (b) Give the scientific contribution of the following scientists:-
 - (i) Jo Anne Stubbe
 - (ii) John Buchanan
 - (iii) A. Garrod
 - (iv) Thomas Sydenham

 $1 \times 4 = 4$

- 2. (a) The enzyme nitrogenase is inactivated by exposure to oxygen.
 What are the different strategies involved for protecting the enzyme from oxygen in the following:
 - (i) Cyanobacteria
 - (ii) Free living obligatory aerobes
 - (iii) Legume root modules

 $2 \times 3 = 6$

- (b) In bacteria, pyrimidine biosynthesis is regulated at Apease step, while in humans, regulation is at the carbomoyl phosphate synthetase II step.
- (a) (i) Glutamate dehydrogenase catalyzes a reversible reaction.
 Show how different allosteric regulators determine the direction of the reaction.

		(ii)	The mitochondrial form of carbamoyl phosphat	e -	
			synthetase is allosterically regulated by N-acety	yl	
			glutomate. What is the rationale for this effect. $3 \times 2 = 6$	6	
	(b)) Give a brief account of regulation of the activity of			
		gluta	nine synthetase.	5	
I .	(a)	Give the biochemical basis and symptoms of the following:			
		(i)	Congenital erythropoietic porphyria.		
		(ii)	Lesch - Nyhan Syndrome		
		(iii)	Phenyl ketonuria		
		(iv)	Orotic Aciduria 2 × 4 =	8	
	(b)	PLP is a versatile coenzyme. Support your answer with suitable			
		exam	ple.	3	
5.	(a)	Expla	$\hat{u}n: \qquad 2 \times 4 = 3$	8	
		(i)	Mature RBCs are unable to synthesize heme.		
		(ii)	Hydroxyurea which destroys tyrosyl radicals, is useful a	as	
			an antitumor agent.		
		(iii)	Individuals who are undergoing chemotherapy wit	h	
			FdUMP or methotrexate temporarily go bald. Particles		
		(iv)	Nitrogen fixation is energetically consuming process.	,	
	(b)	What	are the different pathways for breakdown and synthesi	is	
		of gly	ycine?	3	
			· fp.T.	O.	

1374 (4)

	•		(7)		
6.	(a)	(i) ·	Why does Von Gierke's glycogen storage dis	sease cause	
			symptoms of Gout?		
		(ii)	By what pathway(s) does the ribose rele	ased from	
			nucleotide degradation enter intermediary meta	bolism and	
			become converted to cellular energy?	$2\frac{1}{2} \times 2 = 5$	
	(b)	Write	e down the steps involved in the conversion of	any two:	
		(i)	Tyrosine to epinephrin		
		(ii)	Succinyl CoA to Protoporphyrin		
		(iii)	Tryptophan to NAD	6	
7.	(a)	(i)	Since dUTP is not a normal component of DN	A, why do	
			you suppose ribonucleotide reductase has th	e capacity	
			to convert UDP to dUTP ?		
	•	(ii)	Discuss the major biosynthetic reactions that ut	ilize PRPP.	
		(iii)	What histidine metabolite would you expect to	accumulate	
			in a folate or B ₁₂ deficient patient and why?	$2 \times 3 = 6$	
	(b)	What	is the lateral pathway for purine biosynthesis ar	nd why it is	
		name	d so?	5	
8.	(a)	How are the following secondary metabolites synthesized:			
		(i)	Creatinine.		
		(ii)	Spermine	116~2 - 3	

(b)	ATP is synthesized primarily by energy metabolism, wherea	as				
	other nucleoside triphosphates are formed by the action of					
	nucleoside diphosphate kinase. What additional pathways exists					
	for GTP synthesis.	3				

- (c) Draw a purine ring showing the source of different 'C' & 'N' atoms.
- (d) Write down the degradation pathway of protine. 2