994

B.Sc. (Hons.) / H

C

BIOCHEMISTRY - Paper X

(Metabolism of Amino Acids, Nucleotides and Porphyrins)

(Admissions of 2000 and onwards)

Time: 3 Hours

Maximum Marks: 60

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all, including Question No. 1 which is compulsory.

- 1. (a) Explain the following:
 - (i) Persons on high protein diet are advised to drink lots of water.
 - (ii) Mature RBCs are unable to synthesize heme
 - (iii) Children suffering from Kwashiorkar show depigmentation of skin and hair.
 - (iv) Nitrogen fixation is energetically costly.
 - (v) Deoxyadenosine is toxic to mammalian cells.
 (10)

P.T.O.

(b) Name the following:

- (i) The amino acid formed from serine and is key building block in biosynthesis of heme.
- (ii) The compound which links urea cycle with ICA cycle.
- (iii) The multifunctional enzyme of pyrimidine biosynthesis.
- (iv) Analogue of hypoxanthine used in treatment of gout (in which nitrogen and carbon atoms at 7th and 8th position are interchanged)
- (v) Enzyme deficient in alkaptonuria.
- (vi) Enzyme involved in salvage pathway. (6)

2. (a) Compare the following:

- (i) Carbamoyl phosphate synthetase I and II
- (ii) Oxidative deamination and transamination
- (iii) Erythropoietic porphyria and intermittent acute porphyria.(6)
- (b) Explain the regulation of heme biosynthesis. (5)

3. (a) Write short notes on any two:

- (i) Glucose alanine cycle
- (ii) Urea cycle

(iii) y Glutamine cycle for transport of amino acid

	(iv) Purine nucleotide cycle (8)
	(b) Give one example of reaction requiring following coenzyme/cofactor:
	(i) Molybdenum
	(ii) $N^5 N^{10}$ methylene tetrahydrofolate (2)
	(c) Draw the purine ring indicating donor molecules.
4.	(a) Write the scientific contribution of the following:
	(i) John Buchanan and Robert Greenberg
	(ii) David Shemin
	(iii) Hens Krebs and Kurt Hanseleit (3)
	(b) Give the biochemical basis of following disorders and name the defective enzyme
	(i) Orotic aciduria
	(ii) Severe combined immuno deficiency (SCID)
	(iii) Maple syrup urine disease
	(iv) Lesch Nyhan syndrome (8)
5.	(a) Write the mode of action of following (any four):
•	(i) Azaserine
	(ii) Trimethoprim

P.T.O.

994	4	
	(iii) Hyrdoxy urea	
	(iv) 5-Flurouracil	
	(v) PALA	8)
	(b) Why is the catabolism of isoleucine said to both glucogenic and ketogenic? (be 3)
6.	(a) Discuss the de novo synthesis of pyrimidin	ne
	nucleotides and its regulation. (6)
	(b) Write short note on nitrogen balance. (5)
7.	(a) Explain biosynthesis of spermidine. (3)
	(b) Write the conversion of glutamate to glutamine	e .
		3)
	(c) S-adenosyl methionine serves as a methyl grou	
	donor in many reactions. Explain. Give tw	
	examples. (5)
8.	Explain the following:-	
	(i) Regulation of carbamoyl phosphate syntheta for urea cycle.	se
	(ii) Regulation of Ribonucleotide reductase.	

(iii) Sulfonamide drugs do not interfere with human

purine nucleotide biosynthesis.

(200)

(4,4,3)