	This c	uestion	paper	contains	7	printed	pages
--	--------	---------	-------	----------	---	---------	-------

Roll No.						ľ

S. No. of Question Paper: 8683

Unique Paper Code

: 249505

 \mathbf{C}

Name of the Paper

: BCHT-510 : Immunology

Name of the Course

: B.Sc. (Hons.) Bio-chemistry Part III

Semester ·

: V

Duration: 3 Hours

Maximum Marks:

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all.

Question No. 1 is compulsory.

Use of scientific calculator/log tables may be allowed.

1. (A) Choose the one BEST answer:

- (i) If you could analyze, at the molecular level, a plasma cell making IgA antibox you would find all of the following except:
 - (A) a DNA sequence for V, D and J genes translocated near the C_{α} DNA exc
 - B) mRNA specific for either k or λ light chains
 - (C) mRNA specific for J chains.
 - (D) mRNA specific for μ chains.

	(2)
(ii)	If all of an animal's immune system is destroyed, which of the following
	reconstitute the entire immune system ?
	(A) Thymocytes
	(B) Bone Marrow Stem cells
	(C) Lymph Node cells
	(D) All of the above.
(iii)	Cell surface molecule that initiates the respiratory burst is:
	(A) Myeloperoxidase
	(B) Superoxide dismutase
	(C) NADPH-oxidase
	(D) Hypohalide.
(iv)	In old age, which component of the immune system appears to b
	impaired ?
	(A) B cells
	(B) Neutrophils
	(C) NK cells
	(D) T cells:

- (v) A polyclonal antiserum raised against human IgA will react with :
 - (A) Human IgM
 - (B) k light chain
 - (C) J chain
 - (D) all of the above.
- (vi) If you had 50 V, 20 D and 6 J segments able to code for heavy chain & 40 V and 5 J gene segments for light chain, the maximum repertoire possible is :
 - (A) 76 + 45 = 121 antibody specificities
 - (B) $76 \times 45 = 3420$ Ab specificities
 - (C) $(40 \times 5) + (50 \times 20 \times 6) = 6200$ Ab specificities
 - (D) $(40 \times 5) \times (50 \times 20 \times 6) = 1.2 \times 10^6$ Ab specificities.
- (vii) Which of the following class switching can occur in an ongoing humoral response in mouse ?
 - (A) IgM to IgD
 - (B) IgE to IgG
 - (C) IgA to IgG
 - (D) IgM to IgG.

(viii) B cells do not express:

- (A) Class I antigens
- (B) Class II antigens
- (C) C3b receptors
- (D) CD4.

(B) Identify the following:

- (i) Conserved DNA sequences, located adjacent to V, D and J segments that h direct gene rearrangement.
- (ii) Antibody isotype that is never secreted.
- (iii) One of the several acute phase proteins.
- (iv) Macrophages found in kidney.
- (v) A cytokine that is an endogenous pyrogen.
- (vi) A co-stimulatory signal molecule on the surface of T cell that interacts w B7 on APC.
- (C) State whether the following statements are true or false. If false, justify:
 - (i) A beige mouse lacks thymus.
 - (ii) Immature B cells express membrane IgM and IgD.
 - (iii) The high affinity IL-2 receptor consists of two transmembrane proteins.
 - (iv) RAG-1/RAG-2 genes encode subunits of a B-lineage specific recombinase.
 - (v) Functional properties of Immunoglobulins such as binding to Fc receptors associated with heavy chains only.

5) 86

- 2. (A) Describe the classical pathway for activation of complement system.
 - (B) Dendritic cells provide an important link between innate and adaptive immuni Explain.
 - (C) Describe the structure of IgM molecule. (6,4)
- 3. (A) For each of the following situations, indicate which type(s) of lymphocytes work be expected to proliferate rapidly in lymph nodes and where in the nodes they work do so:
 - (i) Normal mouse with a viral infection
 - (ii) Neonatally thymectomized mouse immunized with a protein antigen.
 - (B) Define the following terms (any 6):

۲,

- Anaphylatoxin, Haplotype, Chemotaxis, ADCC, Innocent Bystander lysis, Superantige chemokine, Anergy.
- (C) IgM can be detected at low levels along with IgA in mucosal secretions. (3,9
- 4. (A) List the factors that contribute to the immunogenicity of a molecule. For each of pair of antigens listed below, indicate which is likely to be more immunogenic. Expl your answer.
 - (1) Native bovine serum albumin (BSA) or Heat-denatured BSA
 - (2) Hen egg- white lysozyme (HEL) or Hen collagen.

(6)

- (B) What are professional APCs? Why are dendritic cells most potent APC to a naïve T cell? Describe the endocytic pathway for presentation of exogenous antigen by antigen presenting cells.
- (C) In which sites specifically would a pathogen or its antigen would end up if they:
 - (i) entered the body through a small wound in the skin
 - (ii) entered the body from the gut
 - (iii) got into the bloodstream?

(4,7,3)

- 5. (A) Differentiate between the following (any 4):
 - (i) Primary and Secondary Immune Response
 - (ii) Innate and adaptive Immunity
 - (iii) B1 and B2 cells
 - (iv) Haptens and Adjuvants
 - (v) NK cells and Cytotoxic cells
 - (vi) Red pulp and white pulp.
 - (B) Diagrammatically explain the structure of thymus. (12,2)
- 6. (A) Discuss the main processes that generate the diversity in B lymphocyte receptor repertoire.
 - (B) Describe the experiment to demonstrate that genes encoding kappa light chain are rearranged during B-cell development. (9, 5)

P.T.O.

- 7. (A) What is isotype switching? Describe the proposed mechanism for class switch rearranged Ig heavy chain genes.
 - (B) Draw diagrams illustrating the general structure, including the domains of class I and II MHC molecules. You cross a BALB/c (H-2^d) mouse with a CBA (H-2^k) r What MHC molecules will the F1 progeny express on (a) liver cells and macrophages?
- 8. (A) What are the hallmark characteristics of a localized inflammatory response? H
 these changes contribute to an effective innate immune response?
 - (B) Explain the positive and negative selection of thýmocytes in the thymus.
 - (C) A number of defense mechanisms are operative in the mucus membrane lining the d tract. Elaborate them.

8683