[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1777 C Roll No..........

Unique Paper Code : 249403

Name of the Course : B.Sc. (Hons.) Biochemistry

Name of the Paper : Metabolism of Amino Acids and Nucleotides : BCHT-407

Semester : IV

Duration : 3 Hours Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt five questions in all, including Q. No. 1 which is compulsory.

1. Explain the following:

- (i) As a coenzyme, pyridoxal phosphate is covalently bound to enzyme with which it functions, yet during catalysis the coenzyme is not covalently bound.
- (ii) The only known methyl group transfer that does not involve SAM is the synthesis of methionine itself.
- (iii) Persons on a high protein diet are advised to drink lots of water.
- (iv) Deficiency of vitamin B12 results in a decrease in the number of RBCs which can be restored by folate indigestion.
- (v) In humans, the major route of nitrogen metabolism from amino acid to urea is catalyzed by the combined action of transaminase and glutamate dehydrogenase.
- (vi) dATP is toxic to mammalian cells.
- (vii) Mature RBCs are unable to synthesize heme.
- (viii) von Gierke's disease result in hyperuricemia.

	(ix)	Plants do not possess δ amino levulinic acid synthetase activity yet porphyrin are required for the synthesis of chlorophyll.	
	(x)	Polyamines are required for cell proliferation.	(2×9+1=19)
2.	Wri	te short notes on the following:	
	(i)	Purine nucleotide cycle	
	(ii)	Glucose alanine cycle	:
	(iii)	Regulation of biosynthesis of deoxyribonucleotide	(4,5,5=1,4)
3.	(a) Give the mode of action of the following inhibitors and their use in medici		
		(i) Azaserine	
		(ii) Sulphanilamide	
		(iii) Trimethoprim	
		(iv) Allopurinol	
		(v) Hydroxyurea	(2×5≠10)
	(b)	Show how different organisms help to recycle nitrogen in the	e atmosphere. (4)
4.	(a)	Differentiate between the following pairs:	
		(i) Positive and negative nitrogen balance	
		(ii) Carbamoyl phosphate synthetase I and II	
		(iii) Transamination and oxidative deamination	(4×3=12)
	(b)	Which derivative of folate is a reactant in the conversion of	:
		(i) Glycine into serine	
		(ii) Homocysteine into methionine	(1×2=2)

1777 3

5.		e the biochemical basis of any four of the given metabolic disord defective enzyme:	lers and name
	(i)	Lesch Nyhan syndrome	
	(ii)	Orotic aciduria	
	(iii)	Phenylketonuria	
	(iv)	Maple syrup urine disease	
	(v)	SCID	(3.5×4=14)
6.	Wri	te down the steps to accomplish the given conversions (any 7)
	(i)	Tyrosine to melanin	
	(ii)	Histidine to N-forimino glutamate	
	(iii)	Guanine to uric acid	
	(iv)	dUMP to dTTP	
	(v)	Arginine to creatine	
	(vi)	Tryptophan to nicotinamide adenine dinucleotide	
	(vii)	Ornithine to spermine	
	(viii)	Methionine to homocysteine	(2×7=14)
7.	(a)	Give one significant contribution of the following scientists:	
		(i) P. Reicherd	
		(ii) John Buchanan	
		(iii) JoAnne Stubbe	
		(iv) A. Folling	(1×4=4)

- (b) (i) What are the different pathways for breakdown and synthesis of glycine?
 - (ii) What are the steps involved in the degradation of heme?
 - (iii) Since dUTP is not a normal component of DNA, why do you suppose ribonucleotide reductase has the capacity to convert UDP to dUDP?

 (4,3,3=10)
- 8. (a) Consider the regulation of *E. coli* glutamine synthetase (GS) and explain the metabolic rationale for each of the following effects:
 - (i) Inhibition of GS by carbamoyl phosphate
 - (ii) Inhibition of the deuridylylation of PII-UMP by α keto glutarate
 - (iii) Activation of uridylylation of PII by ATP $(2\times3=6)$
 - (b) Write the role of pyridoxal phosphate in amino acid metabolism. (4)
 - (c) Arginine and proline catabolic pathways converge at the same molecule.
 Write down the steps and enzymes involved in complete degradation of this molecule.