[This	question paper contains 6 printed pages.]	
997	Your Roll No	
	B.Sc. (Hons.) / III	7
	BIOCHEMISTRY - Paper XIII	
	(Membrane Biochemistry and Bioenergetics)	
	(Admissions of 2000 and onwards)	
Time	: 3 hours Maximum Marks : 6	50
	Write your Roll No. on the top immediately on receipt of this question paper.)	
	Attempt five questions in all, including Question No. 1, which is compulsory.	
1.	(a) Explain the role of the following:	
	(i) Bacteriorhodopsin in Halobacterium halobriu	m
	(ii) Brown fat in new born mammal	
	(iii) Extensin protein in plant cell wall	
	(iv) Arrestin in visual transduction	

(v) Flippases in membranes

- (b) Explain why?
 - (i) The electrochemical gradient in chloroplast is almost entirely as a result of pH gradient.
 - (ii) Myelination increases the velocity of impulse conduction.
 - (iii) Oxidative phosphorylation is irreversible. (2×8)
- (a) Explain how the combined evidence from the freeze fracture technique and FRAP technique led to the development of the Fluid mosaic model for membranes.
 - (b) Give the function of the following in membranes:
 - (i) Caveole
 - (ii) Gap junctions

- (a) Give the detailed mechanism of transport of 3Na⁺ out of the cell and 2K⁺ into the cell by Na⁺K⁺ ATPase.
 - (b) How is Glucose transported in E.coli via group translocation?

- (c) The parietal cells of the stomach lining transport H^+ ions from cytosol (pH 7) into the stomach, contributing to the acidity of gastric juice pH 1.0. Calculate the free energy of transport of 1 mol of H^+ through the pump at 25°C, $\Delta \psi = 0.05V$ (-ve inside).
- (d) What makes Aquaporins selective channel for water molecules? (3,3,3,2)
- 4. (a) Why do the following molecules have high free energy of hydrolysis:
 - (i) Phosphoenolpyruvate
 - (ii) ATP
 - (b) Given the two reactions:

(c) Give the different mechanisms present in the cell to destroy the Reactive oxygen species (ROS) produced. (3,4,4)

4

- (a) Show how the P/O ratio for NADH is dependent on the shuttle system used to transfer cytosolic NADH into the mitochondria for oxidation.
 - (b) Show how F₀F₁ATP synthase catalyses ATP synthesis by rotational catalysis.
 - (c) Show how Myxothiazol and Antimycin A have helped in elucidating the electron flow through Complex III via the Q cycle in ETC. (3,5,3)
- 6. (a) Compare cyclic photophosphorylation and non cyclic photophosphorylation in terms of:
 - (i) O2 evolved
 - (ii) NADH produced
 - (iii) Quantum yield
 - (b) What is the functional significance of segregation of PS I and PS II.
 - (c) Show how Luciferase enzyme can be used to assay ATP produced.
 - (d) Show how water is split by water splitting complex to generate O_2 . (4,3,2,2)

- 7. (a) Show how?
 - (i) Nerve transmission is all or none phenomenon.
 - (ii) The action potential is transmitted with constant intensity and not diminished with distance
 - (b) How do the following neurotoxins act:
 - (i) Tetrodotoxin
 - (ii) Botulinus toxin
 - (iii) Dendrotoxin
 - (c) Give the sequence of events at the axonic terminal that leads to the exocytosis of the neurotransmitter. (4,3,4)
- 8. Explain the mechanism how?
 - (a) Liposomes can be used as model membrane systems.
 - (b) Water soluble α hemolysin forms channel forming toxin.
 - (c) Tumor cells frequently become simultaneously resistant to several chemotherapeutic drugs.

- (d) Cold blooded animals undergo homeoviscous adaptation when surviving in sub zero temperatures.
- (e) LDL receptor is endocytosed and transported to lysosomes. (2,2,2,2,3)

[R = 8.314 J/mol.K, F = 96,480 J/V.mol]