Sl. No. of Ques. Paper

: 1770

GC-3

Unique Paper Code

: 32581102

Name of Paper

: Cell and Radiation Biology

Name of Course

: B.Sc. (Hons.) Biomedical Sciences (CBCS)

Semester

: I

Duration

: 3 hours

Maximum Marks

: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer five questions in all. Question No. 1 is compulsory.

Give illustrations and examples wherever required.

Attempt all subparts of a question together.

- 1. (a) Briefly explain (any three):
 - (i) Viroids
 - (ii) RBC ghost
 - (iii) Radioisotopes
 - (iv) Cell cycle check points
 - (v) Chromatin.

 $3 \times 2 = 6$

- (b) Differentiate between: (any three)
 - (i) Rate zonal and isopycnic density gradient centrifugation
 - (ii) Nucleus and nucleoid
 - (iii) GM counter and Scintillation counter
 - (iv) Carrier and channel proteins.

 $3 \times 3 = 9$

- (c) State True or False and justify your answer (any two):
 - (i) Facilitated diffusion requires ATP
 - (ii) Chromosomes have only DNA and histones
 - (iii) Phosphorylation controls both activation and inhibition of Cdk 1.

 $2 \times 2 = 4$

- 2. Write short notes (any four):
 - (i) Structure of nuclear pore complex
 - (ii) Biomedical applications of radioisotopes

	(iii)	Microtubules	
	(iv)	P-type transporter	
	(v)	Lampbrush chromosomes. $3.5 \times 4 =$:14
3.	(a)	Give well labelled diagrams for (any two):	
		(i) Golgi apparatus	
		(ii) Effect of hypotonic, isotonic and hypertonic solutions on RBCs	
	•	(iii) Chloroplast. 4×2	=8
	(b)	What is endosymbiont theory? Give features of mitochondrial genome.	6
4.	(a)	Design an experiment to show the mobility of membrane proteins.	5
	(b)	Discuss structure and function of gap junction.	5
	(c)	What are lysosomal storage diseases? Discuss.	4
5.	(a)	With the help of a diagram explain post-translational protein transport in ER.	5
	(b)	Explain the role of treadmilling and ATP in microfilament polymerization.	5
	(c)	Explain hazards of using radioisotopes.	4
6.	(a)	Give significance of SER.	4
	(b)	Diagrammatically describe Prophase-I of meiosis.	5
	(c)	Explain mechanisms of CDK regulation	5