This question paper contains 4 printed pages?

Your Roll No.

942

B.Sc. (Hons.)/III

 \mathbf{C}

BOTANY---Paper XII

(Plant Metabolism)

(Admissions of 2004 and onwards)

Time: 3 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer five questions in all, including

Question No. 1 which is compulsory.

- (i) Name the rhizobial symbiont which fixes N₂ with Sesbania stem nodules.
 - (ii) Name the step of reaction between succinyl CoA and succinic acid in Krebs cycle.
 - (iii) Which enzyme catalyzes the reaction between HCO₃ and PEP in the mesophyll cells of Zea mays?

P.T.O.

(iv) Define Pasteur effect.

•	(v)	Name the two components of the nitrogenase	enzyme	
		complex.		
	(vi)	Which metabolism exhibits a temporal separ-	ation in	
		terms of CO ₂ fixation ?	6×1≃6	
2.	(1)	Outline the steps of β -oxidation of fats. Explain	Explain with the	
		help of a 16C long fatty acid.	3+3=6	
	(ii)	What is temperature coefficient? What is its v	alue for	
		photosynthesis 1 ?	1+1=2	
3.	· (i)	Define the following:	4×1=4	
		(a) Coenzymes		
		(b) RQ		
		(c) Oxidative Phosphorylation		
		(d) Reaction center chlorophyll.		
	(ii)	Give one contribution each of the following	scientists	
		(any eight):	8×½=4	
		(a) T.Cech		

(3) 942

		(b) Lipmann	
		(c) Hatch & Slack	
		(d) Michaelis	
		(e) Govindjee	
		(f) Winogradsky	
		(g) Decker & Tio	
		(h) D.I. Arnon	
		(i) Renben et al.	
4.	(i)	Give a schematic view (with enzymes) of Krebs	cycle,
		indicating the reversible steps.	3+1=4
	(ii)	Comment on the inhibitors of light reaction.	2
	(iii)	Define light and CO ₂ compensation points.	2
5.	Diffe	rrentiate between (any four):	4×2 ≃ 8
	(i)	Photorespiration and photophosphorylation	
	(ii)	Competitive and non-competitive inhibition	
	(iii)	Preparatory and pay-off phase in glycolysis	

(4) 942

- (iv) Action and absorption spectrum
- (v) Reductive amination and transamination
- (vi) Synthesis and degradation of fats.
- 6. (i) Diagrammatically represent the Z-scheme of light reaction.
 - (ii) Explain the chemiosmotic mechanism for ATP synthesis. 4+4=8
- 7. Write explanatory notes on the following (any four): $4 \times 2 = 8$
 - (i) Genes involved in nodule formation
 - (ii) High energy bonds in ATP
 - (iii) PPP and its significance
 - (iv) Allosteric enzymes
 - (v) Shuttle mechanisms for NADH oxidation.