This question paper contains 4 printed pages]							
		Roll No.					
S. No. of C	uestic	on Paper : 1686					
Unique Paper Code		ode : 216601 C					
Name of th	ie Pape	er : Plant Metabolism and Biochemistry (BTHT-610)					
Name of th	ie Cou	rse : B.Sc. (Hons.) Botany					
Semester		: VI					
Duration:	3 Hou	rs Maximum Marks : 75					
	(Write your Roll No. on the top immediately on receipt of this question paper.)						
		Attempt Five questions in all including					
		Question No. 1 which is compulsory.					
1. (a)	Ansv	wer briefly the following (any five): $5\times2=10$					
	(<i>i</i>)	Define nitrification and denitrification.					
	(ii)	Define and graphically represent Michaelis-Menten constant.					
	(iii)	Differentiate between Triglyceride and Phospholipid.					
	(iv)	What are coupled reactions? Give one example.					
	(v)	How was it shown that maximum photosynthetic activity occurs in blue and red					
		lights?					
	(vi)	Define active and allosteric sites.					
	(vii)	What is anaerobic respiration?					

(2)

	(<i>b</i>)	Fill in the blanks:					
		(i)	If RQ is I, respiratory substrate is				
		(ii)	The biochemist who proposed lock and key hypothesis was				
		(iii)	The number of NADPH used for the fixation of one molecule of	of CO ₂			
			is				
		(iv)	Protein component of an enzyme is				
		(v)	The synthesis of carbohydrates through the reversal of glycolysis is	······································			
2.	Expl	lain tl	he following (any five):	5×3=15			
	(<i>i</i>)	In some plants, respiration continues even in the presence of cyanide.					
	(ii)	A so	olution of chlorophyll appears red in reflected light.				
	(iii)	02	is not used during Krebs cycle but still the cycle does not operate in the	absence			
		of o	oxygen.				
	(iv)	All	enzyme catalyzed reactions show a pH optimum.				
	(v)	Mal	lonic acid inhibits the activity of the enzyme succinic dehydrogenase, but the in	nhibition			
		gets	s reduced on addition of succinic acid.				
	(vi)	Syn	nthesis of fatty acid is not a reversal of fatty acid breakdown.				
3.	Wri	te sho	ort notes on the following (any five):	5×3=15			
	(<i>a</i>)	lsoc	enzymes				
	(<i>b</i>)	Din	nitrogenase				

(3)				1686

	(c)	Substrate level phosphorylation	
	(<i>d</i>)	Significance of pentose phosphate pathway	
	(e)	Breakdown of starch by amylases and phosphorylases	
	(<i>f</i>)	Emerson enhancement effect and its significance	
	(g)	Transamination.	
1.	Writ	e explanatory notes on the following (any three): 3×5=	15
	(<i>a</i>)	Secondary metabolites	
	(<i>b</i>)	Non-cyclic photophosphorylation	
	(c)	CO ₂ fixation in CAM and C ₄ plants	
	(d)	Sucrose synthesis in plants	
	(e)	Glycolysis.	
5.	(<i>a</i>)	Give a concise account of classification of enzyme. Give <i>one</i> example of each class.	6
	(<i>h</i>)	What are catabolic and anabolic processes? Discuss the role of Acetyl CoA injcellu	lar
		metabolism.	6
	(c)	Give the experimental evidence which revealed that PGA is the first product	of
		CO ₂ assimilation in C ₃ plants.	3
6.	(4)	Explain the mechanism of photorespiration in deatil. Highlight its significance.	8
	(<i>b</i>)	Explain the process of rhizobial infection and root nodulation in legumes. P.T	7
		Γ.1	.υ.

(4)

7. (a) Give an account of electron transport chain in mitochondria and its role in ATP synthesis.
(b) Explain β-oxidation pathway of breakdown of fatty acid.
(c) Name the enzymes catalyzing the following reactions:
(i) Conversion of sucrose to fructose and glucose
(ii) Conversion of acetaldehyde to ethanol

(iii) Conversion of pyruvate to acetyl CoA.