This quest	tion paper contains 4 printed pages	
	Roll No.	
S. No. of C	Question Paper : 761	
Unique Pa	Paper Code : 216601 E	
Name of	the Paper : Plant Metabolism and Biochemistry (BTHT-610)	
Name of	the Course : B.Sc. (Hons.) Botany	
Semester	: VI	
Duration	: 3 Hours Maximum Marks	: 75
· (W)	rite your Roll No. on the top immedictely on receipt of this question paper.)	
٠.	Attempt five questions in all including	
	Question No. 1 which is compulsory.	
1. (a)	Give contributions of the following:	5×1
	(i) Peter Mitchell	
	(ii) J. Sumner	
-	(iii) E. Racker	
	(iv) Otto Warburg	
	(v) R. Govindjee.	
(b)	Expand any five of the following:	5×½
	(i) DCMU	. •
	(ii) SHAM	
	(iii) PEPCK	

		(iv) NADH	
		(v) PDH	,
		(vi) PCR	
	(c)	Define the following:	5×1
		(i) Q ₁₀	•
		(ii) Cofactors	•
		(iii) Nodulins	
		(iv) Flavonoids	
		(v) Anaplerotic Reactions.	
	(d)	Fill in the blanks:	5×½
		(i) ATPase activity in mitochondria is inhibited by	
		(ii) Glycolysis is also known as	
		(iii) An aquatic pteridophyte showing symbiotic association with cya	nobacteria
		(iv) The α 1-6 glycosidic linkage in starch is cleaved by the enzyme	······································
		(v) Phosphatase belongs to class of enzymes.	
2.	Diff	erentiate between any three of the following:	3×5
	(i)	Reversible and Irreversible enzyme inhibition	
	(ii)	C ₃ and CAM plants	
	(iii)	Aerobic and Anaerobic Respiration	
	(iv)	Glycolysis and Gluconeogenesis	
	(v)	Reductive amination and Transamination.	

3.	Con	nment upon any three of the following:				3×5
	(i)	Oxidative Pentose Phosphate Pathway		· .	٠	
	(ii)	Nitrogenase	•			
	(iii)	Terpenoids				
	(iv)	Regulatory Enzyme	٠.			
	(v)	Kranz anatomy.	·	•	•	
1.	(a)	Work out β -oxidation of a molecule of palmitic pathway.	acid and	give ene	ergetics	of the
	(b)	Write complete biochemical reactions catalyzed	by any	three of	the foll	owing
		enzymes:		· •		3×2
-	•	(i) Cytochrome oxidase				- •
		(ii) GOGAT			,	•
	•	(iii) Pyruvate kinase				
		(iv) 'Lactate dehydrogenase		• .		,
		(v) Isocitrate lyase.	·	•		·
5.	(a)	With the help of a schematic diagram explain the TCA	cycle an	d work ou	nt its ener	rgetics
		for a molecule of glucose.	٠.	•		9
٠.	(b)	Give a brief account of factors affecting photosynthe	sis.	·		6

		(4)	761
ó.	(a)	Give a detailed account of the glyoxylate pathway.	Ş
	(b)	Acetyl CoA is a hub of metabolic activity in the cell. Elaborate.	· · · · · · · ·
		Or	
	Ansv	wer the following using chemical formulae (any two):	2×3
	(i)	Synthesis of a sucrose molecule.	
	(ii)	Substrate level phosphorylation for the synthesis of ATP molecule. (any or	ne example
	(iii)	Show activation of a fatty acid molecule for β-oxidation.	

(a) Write an explanatory note on the role of secondary metabolites in plant defense.

(iv) Synthesis of Asparagine from glutamine.

Photorespiration is not a wasteful process. Justify.

761

7.

(b)

6