| Sr. No. of Question Paper | : 763 | E | Your Roll No | | | | |---------------------------|-------------------|--------------------------------|--------------------------------|--|--|--| | Unique Paper Code | 216605 | | - | | | | | Name of the Course | : B.Sc. (H) B | B.Sc. (H) Botany | | | | | | Name of the Paper | : Plant Biotech | Plant Biotechnology [BTHT-612] | | | | | | Semester | : VI | _ | | | | | | Duration: 3 Hours | | | Maximum Marks : 75 | | | | | Instructions for Candid | ates | | | | | | | 1. Write your Roll No. | on the top imm | ediately on re | eceipt of this question paper. | | | | | 2. Attempt five question | ns in all. | | | | | | | 3. Question No. 1 is co | mpulsory. | 1. (a) Name the techni | ique used to : | | (5) | | | | | (i) Amplify si | ngle molecule o | f DNA | | | | | | (ii) Confirm th | e identity of cri | minals | | | | | | (iii) Detect spe | cific DNA frag | ment in a DN | A sample | | | | | (iv) Localize s | pecific DNA se | quences on cl | romosomes | | | | | (v) Separate n | nolecules on the | e basis of cha | rge/mass ratio. | | | | | (b) Expand the follo | wing abbreviati | ons: | (5) | | | | | (i) pBR | | | | | | | | _ (ii) ARS | | | | | | | [This question paper contains 4 printed pages.] | | | (iii) | MAC | | | | |----|-----|--------|---|------|-----------------------------|---------------| | | | (iv) | RT-PCR | | | | | | | (v) | SDS | | | | | | (c) | Matc | h the following: | | | (5) | | | | (i) | Golden rice | (a) | Stanley Cohen & Paul B | erg | | | | (ii) | cDNA | (b) | Kary Mullis | | | | | (iii) | Restriction Endonucleases | (c) | Ingo Potrykus | | | | | (iv) | PCR | (d) | Reverse transcriptase | | | | | (v) | First recombinant DNA molecule | (e) | H. Smith & D. Nathans | | | 2. | (a) | Brief | ly explain the following terms: | | | (10) | | | | (i) | Androgenesis | | | | | | | (ii) | Antisense RNA | | | | | | | (iii) | Totipotency | | · | | | | | (iv) | Multiple cloning site | | | | | | | (v) | Phagemid | | • | | | | (b) | | are reporter genes? Discuss with on nsgenic plants. | ne e | example their role in produ | ection
(5) | | 3. | Wri | te sho | rt notes on any three: | | (3×5 | i=15) | | | (i) | Cryop | preservation | | | | | (ii) | Plantibodies | | |-------|---|--| | (iii) | Glyphosate resistant plants | | | (iv) | Protoplast isolation, culture and fusion | | | Dif | ferentiate between any five: | (5×3=15) | | (i) | Plasmid and cosmid | | | (ii) | RAPD and RFLP | | | (iii) | Southern blotting and western blotting | | | (iv) | Organogenesis and somatic embryogenesis | | | (v) | Cloning vector and expression vector | | | (vi) | Type I and Type II restriction endonucleases | | | (a) | how Agrobacterium- mediated transformation is achieved using | the binary | | | vector or cointegrate vector approach. | (4+6=10) | | (b) | Discuss the role of plasmids as vectors in cloning. | (5) | | (a) | Describe the technique of DNA fingerprinting and its application | s. (10) | | (b) | Discuss the role of transgenics in degradation of pollutants. | (5)- | | (a) | Explain the technique of gel electrophoresis. Differentiate between | AGE and | | | PAGE. | (7) | | | | • | | | (iii) (iv) Dif (i) (iii) (iv) (v) (vi) (a) (b) (a) | (b) Discuss the role of plasmids as vectors in cloning. (a) Describe the technique of DNA fingerprinting and its applications (b) Discuss the role of transgenics in degradation of pollutants. (a) Explain the technique of gel electrophoresis. Differentiate between | (b) What are various methods by which a gene of interest can be obtained for genetic engineering? (6) (c) Name four components which are absolutely essential in a PCR mixture. (2)