This question paper contains 8 printed pages]

Your Roll No.....

562

B.Sc./B.Sc. (Hons.)/I

A

CH-103-CHEMISTRY

(Admissions of 2008 onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

(Use separate answer-sheets for Sections A, B and C each)

Section A

(Inorganic Chemistry)

Attempt any two questions.

- 1. (a) Why is 'S' orbital spherically symmetrical? 2

 (b) What is the difference between an arbital.
 - (b) What is the difference between an orbit and orbital?
 - (c) What is the concept of multiplicity? 2
 - (d) Why is NaCl a better conductor of electricity in fused state or in solution than in the solid state, even though it is made up of ions in the solid state itself?

- (e) What is Madelung constant? Give its significance. 2
- (f) Which of the two NH₃ or NF₃ has higher dipole moment? Give reasons.
- 2. (a) Explain the physical significance of Ψ and ψ^2 . 2
 - (b) What do you understand by shielding effect? 2
 - (c) Draw the shapes of 4d orbitals indicating sign of wave function.
 - (d) What are the limitations of Aufbau principle? Give examples.
 - (e) Sketch the appropriate radial wave functions for 1s,
 2s and 2p orbitals and give apparent features of these functions.
 - 3. (a) Define Hess's law. Calculate the lattice enthalpy of hypothetical NaCl₂ from the following data using Born-Haber cycle:

Heat of atomization of Na(s) = + 109 kJ mol⁻¹ Heat of atomization of $Cl_2(g)$ = + 247 kJ mol⁻¹ Electron gain enthalpy for Cl(g) = - 349 kJ mol⁻¹ Lattice enthalpy of $NaCl_2(s) = -2155 \text{ kJ mol}^{-1}$ The first and second ionization enthalpies of Na(g) are +494 and +4561 kJ mol $^{-1}$ respectively.

(b) Using VSEPR theory, predict the shapes of the following:

SF₄, H₂O

2

- (c) Write short note on resonance and resonance energy.
- (d) Draw molecular orbital energy level diagrams for
 B₂ and O₂ and predict :
 - (i) Bond order and
 - (ii) Magnetic properties of these molecules. 31/2
- (e) Explain "The decomposition temperatures of CdCO₃ is 350°C while that of CaCO₃ is 900°C despite the fact that Cd²⁺ and Ca²⁺ have the same size."

Section B

(Organic Chemistry)

Attempt any two questions.

- (a) Allylic and benzylic anions are more stable than their non-allylic and non-benzylic counterparts. Explain.
 - (b) Rank the following compounds in order of ascending basicity giving reason:
 - p-(Trifluoromethyl) aniline, p-methylaniline, p-(fluoromethyl) aniline.
 - (c) (i) Give the structures of :
 - (E)-3-methyl-2-pentene, (Z)-3-isobutyl-2-heptene
 - (ii) Which of the following alkenes can exist as cistrans isomer? Write their structures:

 CH_2 = $CHCH_2CH_3$, CH_3CH = $CHCH_3$,

CH₃CH₂CH=CHCl

(d) Indicate the hybridization of each carbon in $CH_3C \equiv CH$, and predict a value for each bond angle. $2\frac{1}{2},3,4,3$

2. (a) Assign R or S configuration to the chiral centers in the following molecules:

- (b) (i) What is the difference between enantiomers and diastereomers? Explain with the help of a suitable example.
 - (ii) An aqueous solution of pure stereoisomer X of concentration 0.10 g/mL had observed rotation -30° in a 1.0 dm tube at 589.6 nm (the sodium D line) and 25°C. Calculate its [α]_D at this temperature.

- (c) Draw Newman projection formulae for the eclipsed and staggered forms of ethane. Plot a graph of potential energy versus bond rotation in ethane.
- (d) Arrange the following carbocations in order of increasing stability and give reasons:

$$Me^{+}CHMe CH_{2} = CHCH_{2}^{+} MeCH_{2}CH_{2}^{+}$$
 3,4,3,2½

3. (a) Assign E or Z configuration to the following alkenes giving the priorities to the attached groups:

(i)
$$H_{3C}$$
 $C = C < \frac{CH(CH_3)_2}{CH_2OH}$

$$\begin{array}{ccc} & \text{Cl} & \text{CH}_2\text{CH}_3 \\ \text{(ii)} & \text{CH}_3\text{O} & \text{CH}_2\text{CH}_2\text{CH}_3 \end{array}$$

- (b) Draw two different chair conformations of methylcyclohexane and label all positions as axial or equatorial explaining which is more stable.
- (c) How could you separate a mixture of 4-chlorophenol and 4-chlorocyclohexanol.

- (d) Write short notes on any two of the following:
 - (i) Baeyers strain theory and its limitations
 - (ii) Hyperconjugation
 - (iii) Hydrogen bonding.

3,3,21/4,4

Section C

Attempt two questions in all.

Log tables and calculator may be allowed.

R = 8.314 J/K/mol.

- (a) Calculate the pH of 0.1 M CH₃COOH. The dissociation constant of acetic acid is 1.8 × 10⁻⁵.
 - (b) A buffer solution contains 0.25 M NH₄OH and 0.4 M NH₄Cl. If the pH of buffer is 9.05; calculate the dissociation constant K_b for NH₄OH.
 - (c) Calculate the work done when pressure on 2 moles of hydrogen gas is reduced from 20 to 1 atm at a constant temperature of 273 K. The gas behaves ideally. Also calculate ΔE and q. 4½
- (a) What is Hess's law of constant heat summation?
 Give examples of burning of carbon to CO₂ and formation of sodium hydroxide from Na to explain the law.

(b) Derive the following relationship for the salt of a weak acid and strong base: 6½

$$pH = -\log \sqrt{\frac{K_w K_a}{C}}.$$

- (a) Explain why an aqueous solution of CuSO₄ is acidic
 and that of NaCl is neutral.
 - (b) Define the following:

8

- (i) State functions
- (ii) Exact differentials
- (iii) Lattice energy
- (iv) Solubility product.