[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	$: 6007$	Dour Roll No................
Unique Paper Code	$: 235164$	
Name of the Course	$:$ B.Sc. (Hons.) Chemistry	
Name of the Paper	$:$ Mathematics-I (MACT-101)	
Semester	$:$ I	
Duration $: 3$ Hours		Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately oñ receipt of this question paper.
2. There are 3 Sections in this question paper.
3. Attempt any two questions from each Section.
4. Student are allowed to use scientific calculator without programming.

SECTION - I

1. (a) (i) The number $\mathrm{a}=1.234$ and $\mathrm{b}=3.468$ have been rounded to 4 significant figures. Determine the error bound for $a-b$.
(ii) Show that $\ln (\mathrm{y})=(2.302585 \ldots) \log _{10} \mathrm{y}$.
(b) (i) Solve the quadratic equation $x-2 \sqrt{x}=3$.
(ii) For which value of m will the equation $9 x^{2}-(m-3) x+1=0$ have real and unequal roots?
2. (a) Evalluate $\int_{0}^{6} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by using sinpson's $1 / 3$ rule.
(b) The determination of the dipole moment of hydrogen chloride gas gave the following values
$1.048,1.047,1.053,1.048,1.051,1.053,1.045,1.051,1.047,1.047$
Calculate the arithmetic mean, median and standard deviation of these values.
3. (a) Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x^{2}}{x^{2} \sin x^{2}}$.
(b) Find the roots of the equation $x^{3}+x^{2}+3 x+4=0$ up to four decimal places by Newton Raphson method.

SECTION - II

4. (a) Use differential, Estimate the change in the pressure of 1.000 mole of an ideal gas at $0^{\circ} \mathrm{C}$ when its volume changed from 22.4141 to 21.4141 . (6)
(b) Find the interval of convergence of the series

$$
\begin{equation*}
S(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n 2^{n}} \tag{6.5}
\end{equation*}
$$

5. (a) Evaluate the integral

$$
\begin{equation*}
I=\int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta \tag{6}
\end{equation*}
$$

(b) Find the Maclaurin series and interval of convergence for $f(x)=e^{2 x}$.
6. (a) Find the $n^{\text {th }}$ derivative of $\frac{1}{(a x+b)^{2}}$.
(b) Define inflection point. Find local Extrema and inflection points of $f(x)=x^{3}-3 x+1=0$, over the entire x-axis.

SECTION - III

7. (a) Show that the function $\psi=\psi(x)=A \sin (k x)$ satisfies the equation $\frac{\mathrm{d}^{2} \psi}{\mathrm{dx}^{2}}=-\mathrm{k} \psi$, where A and k are constants.
(b) Evaluate

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}} \tag{4}
\end{equation*}
$$

(c) Find the second derivative of the function
$f=f(v)=c e^{-m v^{2} / 2 k t}$, where m, c, k and $\cdot t$ are constants.
8. (a) If $V(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$, show that
$V_{x x}+V_{y y}+V_{z z}=0$.
(b) Define exact differential. Show that the differential,
$d u=\left(2 x y+\frac{9 x^{2}}{y}\right) d x+\left(x^{2}-\frac{3 x^{2}}{y^{2}}\right) d y$ is exact.
(c) Find the value of the line integral,
$\int_{C} d F=\int_{C}[2 x+3 y] d x+[3 x+4 y] d y$. Where C is the straight line segment given by $y=2 x+3$ from $(0,2)$ to $(2,7)$.
9. (a) Show that $\frac{C_{p}}{C_{v}}=\frac{K_{T}}{K_{s}}$.

Where C_{p} : is a heat capacity at constant pressure.
C_{v} : is heat capacity at constant volume.
K_{T} : is isothermal compressibility.
K_{s} : is adiabatic compressibility.
(b) Draw a graph of the function $\mathrm{y}=\mathrm{e}^{-\mathrm{x} \mid \mathrm{x}}$. Is the function differentiable at $\mathrm{x}=0$? Draw a graph of the derivative of the function.
(c) Use Trapezoidal rule,
to evaluate $\int_{1}^{5} \frac{1}{\mathrm{x}} \mathrm{dx}$ by dividing 1 to 5 into 8 equal parts.

