This question paper contains 4 printed pages]

Roll No.					\prod	T
----------	--	--	--	--	---------	---

S. No. of Question Paper: 1606

Unique Paper Code

: 217201

C

Name of the Paper

: Physical Chemistry-I

Name of the Course

: B.Sc. (Hons.) Chemistry

Semester

: II

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

General Instructions:

- (1) Attempt six questions in all.
- (2) Attempt at least two questions from each Section.
- (3) Question No. 1 is compulsory.
- (4) Use of scientific calculator and log tables is allowed:

$$R = 8.314 \text{ JK}^{-1}, k = 1.3806 \times 10^{-23} \text{ JK}^{-1}, N_A = 6.023 \times 10^{23} \text{ mol}^{-1}.$$

- 1. Answer any five of the following:
 - (a) MgSO₄ gives precipitate with ammonium hydroxide but does not give precipitate in the presence of ammonium chloride.
 - (b) Why the values of second and third dissociation constants of phosphoric acid are very less as compared to first dissociation constant?
 - (c) Discuss the effect of temperature on mean free path.
 - (d) What is common ion effect? Discuss its application in qualitative analysis.

- (e) Why glycerol has higher coefficient of viscosity than water?
- (f) Discuss the effect of adding non-volatile impurities on boiling point of the liquid.
- (g) Why NaCl crystal turns yellow on heating?

 3×5

Section A

(a) Define the terms collision diameter (σ) and mean free path (λ) of molecules in a gas.
 Obtain the following expression:

$$\lambda = \frac{1}{\sqrt{2}\pi\sigma^2 N^2} \; .$$

- (b) Derive expression for viscosity of gases. How is it related to collision diameter?
- (c) Calculate the values of second and third Virial coefficients for carbon dioxide at 323 K when values of a = 3.6 atm dm⁶ mol⁻² and b = 0.0428 dm³ mol⁻¹. 4,4.4
- 3. (a) Derive expression for pressure of an ideal gas.
 - (b) The critical constants using van der Waals equation for one mole of a gas are given as:

$$P_c = \frac{\sigma}{27b^2}; \quad V_c = 3b; \quad T_c = \frac{8a}{27bR}$$

Using these, derive the universal relation:

$$P_r = \frac{8T_r}{3V_r - 1} - \frac{3}{V_r} \ .$$

- (c) Reduce van der Waals equation into Virial equation of state and derive expression for Boyle's temperature. 4,4,4
- 4. (a) Draw Andrew's isotherms for CO₂ and explain continuity of states.
 - (b) Discuss the effect of detergent on the surface tension of water. How detergent action makes washing of oil/grease from clothes?
 - (c) Five-fold rotation axis is absent in crystal systems. Explain

4,4,4

- 5. (a) Define surface tension. What are its SI units? Why do certain liquids fall and rise in the capillary tube?
 - (b) At 20° C time taken by equal volumes of water and toluene to flow through a capillary tube are 102 and 69 seconds respectively. Densities of water and toluene are 998 and 866 kg m⁻³ respectively. Viscosity of water at this temperature is 1×10^{-3} Nm⁻² s. What is the value of absolute viscosity of toluene?
 - (c) Arrange the following in increasing order of (i) vapour pressure and (ii) boiling point.

 Water, ethyl alcohol and ethoxy ethane. Justify the answer.

 4,4,4

Section B

- 6. (a) Derive Bragg's equation.
 - (b) Define the following symmetry elements:
 - (i) Mirror plane
 - (ii) Axis of rotation.
 - (c) The density of Li metal is 0.53 g/cm³ and distance between the (100) plane of the metal is 350 pm. Determine whether the lattice is fcc or bcc. Molar mass of Li = 6.941 g/mol.
- 7. (a) Define degree of ionization. Explain at least two factors on which it depends. Derive expression for degree of ionization for a weak acid.
 - (b) Discuss the effect of temperature on ionic product of water.
 - (c) Calculate the pH values of the following solutions:
 - (i) 0.1 M acetic acid; $K_a = 1.8 \times 10^{-5}$.
 - (ii) 0.001 M NaOH
 - (iii) Equal volumes of 0.1 M HCl and 0.01 M NaOH
 - (iv) 0.01 M ammonia; $K_b = 1.8 \times 10^{-5}$.

5,3,4

- 8. (a) Derive expressions for hydrolysis constant and degree of hydrolysis for salt of strong acid and weak base. Also derive expression for calculation of pH of hydrolysed solution.
 - (b) Solubility product of Al(OH)₃, $K_{sp} = 8.5 \times 10^{-2}$. Calculate the solubility of Al(OH)₃ in g/L (Al = 27, O = 16, H = 1).
 - (c) Draw and explain pH Vs. volume of base curve for the weak acid strong base titration.

 5,4,3
- 9: (a) How a solution of weak acid and its salt behave as a buffer? Derive Henderson equation to calculate pH of the solution.
 - (b) Derive the expression for buffer capacity of an acidic buffer solution in terms of amounts of acid and salt present in it.
 - (c) Phenolphthalein and methyl orange can be used for strong acid storng base titration.

 Justify.

 4,4,4