CT31 *	•		. •	4		-
lhic	auestion	naner	contains	4	nrinted	nages
7 1119	question	paper	Contains	7	printed	puges

			 _				
	1	ł	1				
Roll No		1	1	1 1		1	
KOH N).	1					
, , ,			 ı				

S. No. of Question Paper: 7791

Unique Paper Code

: 2171202

F-2

Name of the Paper

: Chemical Thermodynamics and System of Variable Compositions

(DC-1.3)

Name of the Course

: Bachelor with Honours in Chemistry

Semester

: II

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer six questions in all, first question is compulsory.

Use of scientific calculators is permitted.

$$R = 8.314 \text{ J K}^{-1} \text{mol}^{-1}$$
.

1. Attempt any five of the following:

 $5 \times 3 = 15$

- (a) A process can be spontaneous even if the corresponding change in entropy of the system is negative. Explain with example.
- (b) What is the difference between bond energy and bond dissociation energy?
- (c) What is the significance of Debye's T^3 law?
- (d) Why the chemical potential is called 'escaping tendency'?

(2) 7791

- (e) 'Internal energy is state function'. This is statement of first law of thermodynamics.
- (f) Why rusting of iron represented by the following equation is a spontaneous process?

$$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$
.

- (g) Residual entropy of O_2 is zero, but that of CO is not zero at absolute zero. Why?
- 2. (a) What is Joule-Thomson coefficient? Prove that its value is zero for an ideal gas. 4
 - (b) Starting from I and II laws of Thermodynamics derive the relation:

$$\left(\frac{\partial \mathbf{U}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = \mathbf{T} \left(\frac{\partial \mathbf{P}}{\partial \mathbf{T}}\right)_{\mathbf{V}} - \mathbf{P}.$$

4

3

- (c) One mole of an ideal gas at 300 K is compressed reversibly and isothermally from volume
 - 25 dm³ to 5 dm³. Calculate ΔS_{System} and ΔS_{Total} .
- 3. (a) Derive Kirchhoff's law and explain its physical significance. 5
 - (b) Calculate ΔH_{370K} for the reaction :

$$\frac{1}{2} H_2(g) + \frac{1}{2} Br_2(g) \rightarrow HBr(g)$$

Given : $\Delta H_{298K} = -51.535 \text{ kJ mol}^{-1}$

$$C_p(H_2, g) = 29.06 - 0.830 \times 10^{-3} \text{ T}$$

$$C_p(HBr, g) = 27.52 + 3.995 \times 10^{-3} T$$

$$C_p(Br_2, g) = 35.24 + 4.075 \times 10^{-3} \text{ T}.$$

(c) Distinguish between integral heat of solution and integral heat of dilution.

- 4. (a) Using Euler's reciprocity relation prove that pressure of an ideal gas is a state function.
 - (b) Derive the relation for entropy as a function of T, P:

$$dS = \frac{C_{P}}{T}dT - \left(\frac{\partial V}{\partial T}\right)_{P}dP.$$

(c) (i) Derive the following expression for the free energy of mixing involving ideal gases:

$$\Delta \dot{G}_{mix} = nRT \Sigma_i x_i \ln x_i$$
.

How does the above equation indicate that mixing of gases is a spontaneous process ?

- (ii) Prove that $\Delta V_{mix} = 0$ for an ideal mixture. Give its significance.
- 5. (a) Show that work done in reversible isothermal expansion of an ideal gas is greater than that of real gas.
 - (b) Show that for isothermal expansion of an ideal gas $\Delta G = \Delta A$.
 - (c) For defining the spontaneity of a process ΔS_{System} and $\Delta S_{\text{Surroundings}}$ is required but ΔG alone is sufficient for the same. Explain.
 - (d) Using the bond enthalpy data given below calculate the enthalpy change for the reaction:

$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$					
Bond	Bond enthalpy (kJ mol ⁻¹)				
C—C	336.8				
C = C	606.7				
С—Н	410.9				
Н—Н	431.8				

(4) 7791

6

- 6. (a) Derive the expressions for ΔU , ΔH , w and q for adiabatic expansion of an ideal gas for reversible and irreversible change.
 - (b) 1.6 moles of an ideal gas ($C_{v,m} = 2.5 \text{ R}$) at 300 K was allowed to expand adiabatically from 5 atm to final pressure of 2 atm against a constant external pressure of 1 atm. Calculate ΔU , ΔH , w and q.
 - (c) At low temperature enthalpy change dominates the change in free energy and at high temperature entropy change dominates.
- 7. (a) Derive Gibbs-Duhem equation and explain its significance.
 - (b) Calculate the free energy of mixing ΔG_{mix} , Enthalpy of mixing ΔH_{mix} and Entropy of mixing ΔS_{mix} at 25°C, when :
 - (i) 10 moles of A are mixed with 10 moles of B
 - (ii) 10 moles of A are mixed with 20 moles of B.
 - (c) Show that chemical potential of a component in a mixture is less than its chemical potential in pure state at same temperature and pressure.
- 8. Write short notes on any *three* of the following: $3\times4=12$
 - (a) Adiabatic flame temperature
 - (b) Hess's law of constant heat summation
 - (c) Trouton's rule
 - (d) Coupled reaction
 - (e) Second Law of Thermodynamics.

7791 4 2,900