This question paper contains 8 printed pages]

Your Roll No.....

5776

B.Sc. (Hons.) Chemistry/III Sem. B

Paper—CHHT-307

PHYSICAL CHEMISTRY-II

(Admission of 2010 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Use separate answer-sheets for Section A and Section B.

Answer six question in all, selecting at least two questions from each Section. Question No. 1 is compulsory.

(Use of scientific calculator is allowed)

 $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$; $N = 6.023 \times 10^{23} \text{ mol}^{-1}$

- 1. Attempt any five of the following:
 - (a) Isothermal reversible work obtained in the expansion of an ideal gas is greater than that of a non-ideal gas.

- (b) The Helmholtz free energy function is sometimes referred to as work function.
- Using entropy as a criterion for spontaneity ΔS(universe)
 is considered but in case of Gibbs free energy, normally
 ΔG(System) is considered.
- (d) Molecular masses of benzoic acid determined from freezing point depression measurements using (i) its solution in water and (ii) its solution in benzene are not the same.
- (e) For spontaneous mixing of gases μ_i must be smaller than μ_i^* (Pure).
- (f) Zeroth law of thermodynamics.

3×5

Section A

- 2. (a) If pressure, volume and temperature of one mole of a gas are related as $\left(P + \frac{a}{V^2}\right)V = RT$, show that :
 - (i) P is a state function;
 - (ii) dP is an exact differential.

- (iii) Enthalpy of combustion;
- (iv) Bond energy and Bond dissociation energy.
- (b) Using bond energy data calculate the enthalpy change for the reaction:

$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$

Data given :

$$DH^{\circ}(C=C) = 610 \text{ kJmol}^{-1}, DH^{\circ}(H-H) = 436 \text{ kJmol}^{-1},$$

 $DH^{\circ}(C-H) = 413 \text{ kJmol}^{-1}, DH^{\circ}(C-C) = 348 \text{ kJmol}^{-1}.$ 8,

- 4. (a) Show that for reversible isolated process the change of entropy is zero whereas for irreversible isolated process the entropy change is greater than zero.
 - (b) Starting from the first law of thermodynamics, show that for n moles an ideal gas the entropy change with temperature and volume is given by

$$\Delta S = nC_V \ln(T_2/T_1) + nR \ln(V_2/V_1)$$

(b) Show that the work done by an ideal gas in a reversible adiabatic expansion from an initial state $P_1V_1T_1$ to a final state $P_2V_2T_2$ is given by

$$-w = \frac{P_{1}V_{1} - P_{2}V_{2}}{1 - \gamma} = nC_{v,m} T_{1} \left[1 - \left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma - 1}{\gamma}} \right]$$

where
$$\gamma = \frac{C_p}{C_v} = C_{p,m}/C_{v,m}$$
 and $C_{p,m} - C_{v,m} = R$.

- (c) An ideal gas $(C_{p,m} = 29.1 \text{ JK}^{-1}\text{mol}^{-1})$ is expanded reversibly and adiabatically from a volume of 1.43 dm³, at a pressure of 303975 Pa and temperature 298 K, to a volume of 2.86 dm³. Calculate the final temperature and pressure of the gas. 2,5,5
- 3. (a) Explain with examples the following:
 - (i) Integral heat of solution;
 - (ii) Enthalpy of formation of ions in solution;

At what temperature will the entropy of one mole of (c) ideal gas occupying 5 dm3 at 300 K expanding to 500 dm3 increase by 38.294 JK-1? $C_V = 12.6 \text{ JK}^{-1} \text{ mol}^{-1}$ 4,4,4

Joule-Thomson effect Using 5. (a) thermodynamic equation of state show that the Joule-Thomson coefficient for a van der Waals gas,

$$\mu_{j,\mathrm{T}} = \frac{1}{\mathrm{C}_p} \left[\frac{2a}{\mathrm{RT}} - b \right].$$

What will be the inversion temperature of this gas ?

Derive the following relations: (b)

Derive the following relations:
$$C_{p} - C_{v} = \left[\left(\frac{\partial E}{\partial V} \right)_{T} + P \right] \left(\frac{\partial V}{\partial T} \right)_{P}$$

$$= \left[V - \left(\frac{\partial H}{\partial P} \right)_{T} \right] \left(\frac{\partial P}{\partial T} \right)_{V}$$

$$= \left[V + \left(\frac{\partial H}{\partial T} \right)_{P} \left(\frac{\partial T}{\partial P} \right)_{H} \right] \left(\frac{\partial P}{\partial T} \right)_{V}. \qquad 6.6$$

P.T.O.

Section B

- 6. (a) Prove that:
 - (i) $\left(\frac{\partial H}{\partial P}\right)_T = 0$ for an ideal gas

(ii)
$$\left(\frac{\partial \mathbf{E}}{\partial \mathbf{V}}\right)_{\mathbf{P}} + \mathbf{P} = \mathbf{C}_{p} \left(\frac{\partial \mathbf{T}}{\partial \mathbf{V}}\right)_{\mathbf{P}}$$
.

- (b) Define chemical potential. Show that the variation of chemical potential of a component i with pressure is given by $d\mu_i = V_{i,m} dP$.
- (c) Two ideal gases are at the same temperature but at different pressures. If n_1 moles of gas 1 and n_2 moles of gas 2 are mixed isothermally, what will be the free energy of mixing ?

 4.4.4
- 7. (a) Define molal depression constant. Derive thermodynamically an expression relating the freezing point depression of a solution with its molality. How is this expression utilized for the determination of molecular weight of a non-volatile solute?

- (b) The k_f and k_b values of solvent B are 5.0 and 15.0 units. The boiling point of the solvent is 80.0°C and its freezing point is 4.0°C. What will be the boiling point of the solution of A(solute) in B if it freezes at 3.5 °C?
- (a) Derive thermodynamically using chemical potential concept the relation:

$$\Delta G^{\circ} = -RT \ln K_{p}$$

- (b) For a reaction $X_2 \rightarrow 2X$, the equilibrium constant at 1225 K is 3.28×10^{-3} and ΔH° for the reaction is 216.7 kJmol⁻¹. Calculate ΔG° and ΔS° for this reaction at 1225 K.
- (c) Explain with examples the coupling of endoergonic reactions with exoergonic reactions.

 4,4,4

- 9. (a) Explain the terms osmosis and osmotic pressure. Using the concept of chemical potential, derive an expression for the osmotic pressure of the solution in terms of its concentration.
 - (b) Write a short note on abnormal colligative properties of solutions and van't Hoff factor.
 - (c) Calculate the osmotic pressure of 0.1 M solution of $K_4[Fe(CN)_6]$ at 300 K, assuming the salt to be 40% ionised in this solution.