This question paper contains 4 printed pages]

	Roll No.								
S. No. of Question Paper	6012								
Unique Paper Code	: 217305			•		D			
Name of the Paper	: Physical Chemistry–II (CHHT	-30)7)						
Name of the Course	: B.Sc. (H) Chemistry		/						
Semester	: 111						·		

Duration : 3 Hours

Maximum Marks : 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer six questions in all, question no. 1 is compulsory.

Draw the graphs (wherever required) on your answer sheets. Graph paper is not required.

Use of scientific calculator is permitted.

R = 8.314 JK⁻¹ mol⁻¹; N_A = 6.022×10^{23} mol⁻¹

1. Explain giving reasons (any *five*) :

- (a) Crystallization is a negative entropy process yet it occurs spontaneously.
- (b) Joule-Thomson experiment is isoenthalpic.
- (c) The magnitude of the boiling point elevation is less than that of the freezing point depression.
- (d) For mixing of two solvents to form an ideal solution, $\Delta V_{mix} = 0$.
- (e) Work done by the system in a reversible isothermal expansion of an ideal gas is greater than that of irreversible expansion.

- (f) ΔG_{System} accounts automatically for entropy changes of system and surrounding (ΔS_{Univ}) .
- (g) C_P is always greater than C_V .
- 2. Derive the following relations (any *three*) :
 - (a) $C_P C_V = [(\partial E / \partial V)_T + P] (\partial V / \partial T)_P$
 - $(b) \quad (\partial T / \partial V)_{S} = (\partial P / \partial S)_{V}$
 - (c) $(\partial V / \partial T)_{P} \cdot (\partial T / \partial P)_{V} \cdot (\partial P / \partial V)_{T} + 1 = 0$

(d) $TV^{\gamma-1} = Constant$.

4.

- 3. (a) Deduce a relation between relative lowering of vapour pressure and depression in freezing
 point for a solution containing a non-volatile solute.
 - (b) A solution containing 1.05 g of a substance per 100 ml was found to be isotonic with
 3% Glucose solution. Calculate molecular weight of the substance.
 - (c) Show mathematically that the differential heats of solution and dilution are partial molar enthalpies of solvent and solute in a solution.
 - (a) State and explain the Zeroth law of thermodynamics. Also discuss its applications.
 - (b) 100 g of CO at 298 K is held by a piston under 3×10^4 Nm⁻² pressure. The pressure is suddenly released to 1×10^4 Nm⁻² and gas adiabatically expands. If CO is assumed to be ideal and $C_V = 20.80$ JK⁻¹ mol⁻¹, find final temperature, q, w, ΔE and ΔH for the process.
 - (c) Distinguish between bond energy and bond dissociation energy using suitable examples.
 How is the bond energy helpful in determining the resonance energy ? 4×3

4×3

5×3

- (3)
- 5. (a) How does statistical entropy $S = k \ln W$ explain residual entropy ?
 - (b) An ideal solution is made from mixing 5.0 mol of Benzene and 3.25 mol of Toluene. Calculate ΔG_{mixing} and ΔS_{mixing} at 25°C and 1 atm. pressure. Is mixing a spontaneous process ? Justify your answer.
 - (c) Deduce the entropy changes of an ideal gas in reversible adiabatic and irreversible isothermal processes. Also comment on the result. 4×3
 - (a) State and explain Hess's law of constant heat summation.

Hydrazine, N_2H_4 , is a colourless liquid used as a rocket fuel. What is the enthalpy change for the process in which hydrazine is formed from its elements ?

 $N_2(g) + 2H_2(g) \longrightarrow N_2H_4(\ell)$

Use the following reactions and enthalpy changes :

- (i) $N_2H_4(\ell) + O_2(g) \longrightarrow N_2(g) + 2H_2O(\ell); \Delta H = -622.2 \text{ KJ}$
- (*ii*) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell);$ $\Delta H = -285.8 \text{ KJ}$

(*b*)

6.

- b) Show that the work done in isothermal expansion of an ideal gas is more than in adiabatic expansion to same volume.
- (c) What are exact and inexact differentials ? Show that 'dw' is an inexact differential. 4×3

7. (a) Derive the relation between equilibrium constant and temperature. Comment on the result.

4)

(

- (b) A mixture of 0.482 mol N₂ and 0.933 mol O₂ is placed in a reaction vessel of 10.0 litres and allowed to form N₂O at a temperature for which $K_C = 2.0 \times 10^{-37}$, what will be the composition of the equilibrium mixture ?
- (c) Show that :

$$-(\Delta H/T) dT + V dP + G'' d\xi_e = 0.$$

8. Write short notes on the following (any three) :

- (a) Adiabatic Flame Temperature
- (b) Coupled Reactions
- (c) Henry's law
- (d) Gibbs-Duhem equation.

6012

2200

4×3

 4×3