[This question paper contains 2 printed pages.]

Sr. No. of Question Paper	:	6013	D	Your Roll No
Unique Paper Code	:	235365		
Name of the Course	:	B.Sc. (Hons.) Chem	istry	
Name of the Paper	:	Mathematics II / Co	ode : MA	CT-302
Semester	:	III		

Duration : 3 Hours

¢.

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. This question paper has six questions in all.
- 3. Attempt two parts from each question.
- 4. All questions are compulsory.
- 5. Use of scientific calculator is allowed.
- 1. (a) Solve the boundary value problem y''(x) + 8y'(x) + 16y(x) = 0, y(0) = 1, y(1) = 1. (6¹/₂)

(b) Solve the classical wave equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}$, When the separation constant is (i) zero (ii) greater than zero. (6¹/₂)

(c) Use the power-series method to solve the differential equation y''(x) - 9y(x) = 0and show that the solution can be expressed in the form $c_1e^{3x} + c_2e^{-3x}$, where c_1 and c_2 are arbitrary constants. (6¹/₂)

2. (a) Show that
$$\int_{0}^{1} dx \int_{0}^{1} \frac{x^{2} - y^{2}}{x^{2} + y^{2}} dy = \int_{0}^{1} dy \int_{0}^{1} \frac{x^{2} - y^{2}}{x^{2} + y^{2}} dx$$
. (6½)

- (b) Evaluate the double integral $\iint_{D} e^{-(x^2 + y^2)} x^2 dx dy \text{ where } D \text{ is the disk } x^2 + y^2 \le a^2.$ (6¹/₂)
- (c) Change the order of integration in the integral $\int_{0}^{a\sqrt{a^2-x^2}} xy^2 dydx$ and then find the value of the integral (sketch the region of integration). (6¹/₂)
- 3. (a) Determine the nature of the stationary points of the function $f(x, y) = 3x^2 + 12x - 6y^2 + 4y^3 + 5.$ (5)

P.T.O.

- (b) Show that the function $Sin(\alpha x)Sin(\beta y)Sin(\gamma z)$ is an eigen function of the operator $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. What is the eigen value? (5)
- (c) Determine whether the operators $\hat{A} = \frac{d}{dx} x$ and $\hat{B} = \frac{d}{dx} + x$ commute or not. (5)

4. (a) If
$$\vec{A} = t^3 \hat{i} + 2t \hat{j} + e^t \hat{k}$$
 and $\vec{B} = \operatorname{Sint} \hat{i} - \operatorname{Cost} \hat{j} + t \hat{k}$, then evaluate

(i)
$$\frac{d}{dt} \left(\vec{A} \cdot \vec{B} \right)$$
 (ii) $\frac{d}{dt} \left(\vec{A} \times \vec{B} \right)$ (6½)

(b) If $\varphi = \ln r$, show that $\nabla \varphi = \frac{\vec{r}}{r^2}$ where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$. (c) Show that div v = 0 if v = curl w. (6¹/₂) (6¹/₂)

5. (a) Solve the following equations and find the value of x, y, z

x + y + z = 7 2x - 2y + 3z = 14 x - y + z = 1 (use Cramer's rule) (6¹/₂)[3 6 -8]

(b) Find the eigenvalues and eigenvectors of $\begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$. (6¹/₂)

(c) State the condition under which a square matrix is invertible. Find the characteristic equation of the matrix $\begin{bmatrix} 5 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5 \end{bmatrix}$ and hence compute its inverse. (6¹/₂)

6. (a) Solve the equation $z^5 = -1$ and plot the roots in the Complex plane. (6¹/₂)

- (b) Find all non-zero complex number z satisfying $z^2 + |\overline{z}| = 0$. (6¹/₂)
- (c) Define unitary matrix. Show that the determinant of an orthogonal matrix is equal to ± 1 . If det(A) = 0.2 then find the value of det(BA⁻¹B⁻¹).

$$\left(\text{Use det}\left(A^{-1}\right) = \frac{1}{\det}\left(A\right)\right) \tag{61/2}$$

(2200)