|                         | •                                                                   |                |
|-------------------------|---------------------------------------------------------------------|----------------|
| This question paper co  | ontains 4 printed pages]                                            |                |
|                         | Roll No.                                                            |                |
| S. No. of Question Pape | er : <b>48</b>                                                      |                |
| Unique Paper Code       | : 235466 E                                                          |                |
| Name of the Paper       | : MAPT-404 : Differential Equations                                 |                |
| Name of the Course      | : B.Sc. (H) Comp. Sc., B.Sc. (Appl. Phy. Sc.) Analytical            |                |
|                         | Chemistry/Industrial Chemistry/B.Sc. Mathematical                   |                |
|                         | Science/B.Sc. Physical Science                                      |                |
| Semester                | : <b>IV</b>                                                         |                |
| Duration: 3 Hours       | Maximum Marl                                                        | ks : <b>75</b> |
| (Write your             | Roll No. on the top immediately on receipt of this question paper.) |                |
|                         | Attempt two parts from each question.                               |                |
|                         | All questions are compulsory.                                       |                |
|                         | Marks are indicated against each question.                          |                |
|                         | Unit I                                                              |                |
| 1. (a) Solve:           |                                                                     | 61/2           |
|                         | $(y \sec^2 x + \sec x \tan x) dx + (\tan x + 2y) dy = 0.$           |                |
| (b) Solve:              | ·                                                                   | 61/2           |
|                         | $(x^2 + y^2 + 2x) dx + 2ydy = 0.$                                   |                |

 $xp^2 - 2yp + ax = 0.$ 

Solve:

(c)

61/2

61/2

2. (a) Solve:

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{2x} \sin x.$$

(b) Solve: 
$$6\frac{1}{2}$$

$$x^{2}\frac{d^{2}y}{dx^{2}} - 5x\frac{dy}{dx} + 8y = 2x^{3}, x > 0.$$

- (c) Show that the Wronskian of two solutions of the second order homogeneous linear differential equation  $a_0(x) \frac{d^2y}{dx^2} + a_1(x) \frac{dy}{dx} + a_2(x) y = 0$ , is either identically zero or never zero on  $a \le x \le b$ , where  $a_0$ ,  $a_1$  and  $a_2$  are continuous real functions on real interval  $a \le x \le b$ , and  $a_0(x) \ne 0$  for any x on  $a \le x \le b$ .
- 3. (a) Using method of variation of parameters, solve the differential equation: 6½

$$\frac{d^2y}{dx^2} + 4y = \sec^2 2x.$$

(b) Given that y = x is a solution of

$$(x^2 - 1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0,$$

find a linearly independent solution by reducing the order. Write the general solution.

- (c) A large tank initially contains 100 gal of pure water. Starting at t = 0, a brine containing 4 lb of dissolved salt per gallon flows into the tank at rate of 5 gal/min. The mixture is kept uniform by stirring, and the stirred mixture simultaneously flows out at the slower rate of 3 gal/min.
  - (i) How much salt is in the tank at the end of 20 min?
  - (ii) How much salt is present after a long time?

48

4. (a) Solve:

$$\frac{dx}{dt} + 4x + 3y = t,$$

$$\frac{dy}{dt} + 2x + 5y = e^t.$$

(b) Solve:

$$\frac{dx}{x^2 - y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}.$$

(c) Solve:

$$zy dx = zx dy + y^2 dz.$$

## Unit II

5. (a) Eliminate the arbitrary function f from the equation:

$$z=f\left(\frac{xy}{z}\right)$$

to form the corresponding partial differential equation.

51/2

(b) Find the general solution of the differential equation :

$$(y + x) px = (x + y)qy - (x - y)(2x + 2y + z).$$

(c) Find the complete integral of the equation:

51/2

$$xp + 3yq = 2(z - x^2q^2).$$

48

6. (a) Find the complete integral of the equation:

6

$$(p^2+q^2)y=z.$$

(b) Show that the equations:

6

$$xp = yq, \quad z(xp + yq) = 2xy$$

are compatible and find their solution.

(c) Reduce the equation:

6

$$\frac{\partial^2 z}{\partial x^2} - x^2 \frac{\partial^2 z}{\partial y^2} = 0$$

to canonical form.