This question paper co	ontains 7 printed pages]		-	•	
•		Roll No.			
S. No. of Question Pape	er : 2380	•			-
Unique Paper Code	: 2171403		I	7- 4	
Name of the Paper	: Physical Chemistry	Electrochemistry	y (Paper No.	11)	
Name of the Course	: B.Sc. (Honours) Cl	hemistry			
Semester	: IV				
Duration: 3 Hours		•	N	4aximum M	larks : 75
Att	No. on the top immedempt five questions in all from each Section. Question	i. selecting any the	o questions	stion pape	r.)
, ;	Use of scientific c	alculator is allowed	d.		
1. Answer any five	of the following:				5×3=15
(a) Usually a	saturated solution of l	KCI or NH ₄ NO ₃	is used in	the salt	bridge.
Explain.				· .	
(b) Metallic co	onductance decreases v	while electrolytic	conductanc	e increase	es with
temperature.	Comment.	•			

- Given the E° values for the electrodes $Fe^{2+}(aq.)|Fe(s)|$ and $Pt(s)|Fe^{3+}(aq.)|$. $Fe^{2+}(aq.)|Fe(s)|$ as -0.44 V and +0.77 V respectively, calculate the E° value for the electrode $Fe^{3+}(aq.)|Fe(s)|$.
- (d) The amide ion in liquid ammonia has abnormally high transference number. Explain.
- (e) Why does conductivity of an electrolyte solution decease with dilution while the molar conductivity increases ?
- (f) How does ionic velocity differ from ionic mobility?
- (g) Determine the cell reaction and EMF for the cell at 25°C

$$Mg(s)|MgI_2(0.1 M)|I_2(s)|Pt(s)$$

Given that:

$$E^{\circ}_{1 \sqcap I_{2}} = 0.535 \text{ V} \text{ and } E^{\circ}_{Mg}^{2+}_{|Mg} = -2.363 \text{ V}$$

(h) Explain why the use of quinhydrone electrode is restricted to acidic solutions only ?

P.T.O.

Section A

- 2. (a) State and explain Kohlrausch's law of independent migration of ions. How does it help in determining the molar conductivity at infinite dilution of a weak electrolyte?
 - (b) The conductivity of water was found to be 5.5×10^{-6} S m⁻¹ at 25°C. Given $\lambda(H^+) = 0.0350$ S m² mol⁻¹; $\lambda(OH^-) = 0.0199$ S m² mol⁻¹, determine K_w at 25°C.

(c)

It is found that at 25°C, the resistance of a certain conductivity cell is 2.20.000 ohms when it is filled with water. 100 ohms when filled with 0.02 M KCl, and 1.02,000 ohms when filled with water saturated with AgCl. The equivalent conductivity of AgCl is calculated to be $126.8 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ at 25°C. whereas that for KCl is known to be $138.3 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$. Assuming that the solutions are prepared with water of the same resistance as given above

and neglecting the variation of the equivalent conductivity with concentration.

- (i) The cell constant
- (ii) The specific conductivity of the saturated solution of AgCl
- (iii) The solubility and solubility product of AgCl at 25°C. 5.5.5
- 3. (a) Show that though cations and anions move with different speeds the ions are discharged in equivalent amounts at the two electrodes.
 - (b) A solution of 0.01 mol dm⁻³ in silver nitrate is used with silver electrodes in a Hittorf's device. 32.10 mg of silver is deposited in a silver coulometer in series with Hittorf's cell. At the end of the run, 20.09 g of the solution in the anodic compartment was found to contain 39.66 mg of silver, 27.12 g of solution in the cathodic compartment contained 11.14 mg of Ag. Calculate transference number of Ag⁺ ion.

- (c) The molar conductivity of an aqueous solution of 0.0008 M aniline hydrochloride is $120 \times 10^{-4} \, \mathrm{S} \, \mathrm{m}^2 \, \mathrm{mol}^{-1}$. When few drops of aniline were added to the solution, its molar conductivity is reduced to $105 \times 10^{-4} \, \mathrm{S} \, \mathrm{m}^2 \, \mathrm{mol}^{-1}$. Calculate the degree of hydrolysis and hydrolysis constant of the salt. Given $\Lambda_{\mathrm{m}}(\mathrm{HCl}) = 415 \times 10^{-4} \, \mathrm{S} \, \mathrm{m}^2 \, \mathrm{mol}^{-1}$.
- 4. Write short notes on any three of the following: 5.5.5
 - (a) Debye-Huckel-Onsagar theory of ionic atmosphere
 - (b) Various applications of conductance measurements
 - (c) Effect of pressure, viscosity and dielectric constant of the solvent on the conductivity measurements
 - (d) Moving boundary method.

Section B

5. (a) Describe an accurate method for determining the EMF of an electrochemical cell.

- (b) Derive an expression for the electrode potential in terms of chemical potential for the half cells
 - (i) $H^+(aq)|H_2(g)|Pt(s)|$
 - (ii) $Cd^{2+}(aq)|Cd(s)$
- (c) Determine the equilibrium constant for the reaction at 298 K:

$$Cd^{2+} + 4NH_3 = Cd(NH_3)_4^{2+}$$

$$E_{Cd}^{\circ}|_{Cd}^{2+} = -0.40 \text{ V} \text{ and } E_{Cd(NH_3)_4}^{\circ}|_{Cd}^{2+} = -0.61 \text{ V}.$$
 5.5,5

6. (a) Derive an expression to calculate the liquid junction potential for the following cell

$$Ag \mid AgCl(s)|HCl(a_1) \rightarrow HCl(a_2)|AgCl(s)|Ag$$

(b) For the following cell

$$Pb|PbCl_2(s)|PbCl_2(soln.)|AgCl(s)|Ag$$

The potential at 25°C is 0.490 V and the variation of EMF with temperature is given by

$$E = 0.490 - (1.86 \times 10^{-4} \text{ V}. \text{ deg}^{-1})(t - 25)$$

where t is the temperature in degree Celsius, calculate ΔG . ΔH and ΔS for the reaction at 45°C.

- (c) For the cell $Pt|H_2(g, 1 \text{ bar})|HC1 \text{ (m} = 0.1 \text{ mol kg}^{-1})|AgCl(s)|Ag(s)$, the EMF is 0.3524 V at 25°C. Calculate the mean ionic activity coefficient γ_{\pm} of 0.1 mol kg⁻¹ HC1 at 25°C if the standard electrode potential. E°. of $AgCl(s)|Ag(s)|C1^{-1}$ is 0.2224 V.
- 7. Write short notes on any three of the following: 5.5.5
 - (a) Concentration cells without transference
 - (b) Determination of pH of a solution
 - (c) Applications of potentiometric measurements
 - (d) Primary and secondary cells.