[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 740 G Your Roll No......

Unique Paper Code : 217505

Name of the Paper : Physical Chemistry – IV (CHHT-513)

Name of the Course : B.Sc. (Hons.) Chemistry

Semester : V

Duration: 3 Hours Maximum Marks: 75

Instructions for the Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt any six questions in all.
- 3. Question No. 1 is compulsory.
- 4. Attempt at least one question from each section.
- 5. Use of scientific calculator is permitted.
- 1. Explain any five of the following:
 - (a) Higher the activation energy of a reaction, slower is the rate of reaction.
 - (b) Difference between Order and Molecularity of a reaction.
 - (c) A DC current cannot be used for conductance measurement.
 - (d) Role of Uranyl ion in photochemical decomposition of oxalic acid.
 - (e) Adsorption is an exothermic process.
 - (f) Walden's rule is not applicable to cations of small size. (3×5)

Section A

2. (a) What are the various factors affecting conductance of a solution? How do you account for increase in conductance at high field strength and high frequency?

- (b) The specific conductivity of a saturated solution of CaF_2 was found to be 4.2×10^{-5} ohm⁻¹ cm⁻¹. The specific conductivity of water used to make the solution was 2.0×10^{-6} ohm⁻¹ cm⁻¹. The equivalent conductivities of Ca^{2+} and F^- ions are 52.0 and 48.0 ohm⁻¹ cm² equiv⁻¹. Calculate the solubility of CaF_2 in water. (6,6)
- 3. (a) What do you mean by abnormal transference numbers? Explain with suitable example.
 - (b) Explain the moving boundary method to determine the transference number of ions.
 - (c) During the electrolysis of a solution of potassium chloride between platinum electrodes, 0.0137 g of the chloride was lost from the anodic compartment and 0.0857 g of silver was deposited in a silver coulometer connected in series with the cell. Determine the transference number of K⁺ and Cl⁻ ions. (4,4,4)
- 4. (a) Draw and discuss the titration curves obtained in the conductometric titration of:
 - (i) An aqueous solution of HCl with aqueous solution of NaOH.
 - (ii) An aqueous solution of HCl with aqueous solution of NH₄OH.
 - (b) What are the advantages of conductometric titrations over conventional titrations?
 - (c) At 25°C, the equivalent conductance at infinite dilution of HCl and CH₃COOH are 400 and 85 ohm⁻¹ cm² gequiv⁻¹ respectively. If the transport numbers of H⁺ and CH₃COO⁻ are 0.8 and 0.4 respectively, calculate the equivalent conductance of acetic acid at infinite dilution. (4,2,6)

Section B

5. (a) The reaction,

 $vA \rightarrow Products$

is a first order reaction with respect to A.

- (i) Write down its differential rate law and deduce from it the integrated rate law.
- (ii) Show that half life of such a reaction is independent of the initial concentration of the reactant A.
- (b) For the decomposition of acetone dicarboxylic acid, rate constants are 2.46×10^{-5} at 273 K and 1.63×10^{-3} at 303 K. Calculate the energy of activation of the reaction.
- (c) Comment on the statement that ionic reactions are fast while the molecular reactions are slow. (6,4,2)
- 6. (a) Derive an expression for the rate constant on the basis of collision theory for bimolecular gaseous reactions.

$$k_2 = p N_A \pi \sigma_{AB}^2 \left(\frac{8kT}{\pi \mu} \right)^{1/2} exp \left(\frac{-E_0}{RT} \right)$$

Compare it with that of Arrhenius equation and show that

$$E_a = E_0 + \frac{RT}{2}$$

(b) The following results were obtained for the saponification of ethyl acetate using equal concentration of ester and alkali:

Time (min)	0	4.89	10.07	23.66
mL of acid used	47.65	38.92	32.62	22.58

Show that the reaction is second order.

(8,4)

7. (a) An acid HA catalyses the substrate S to products as follows:

$$S + HA \xrightarrow{k_1} SH^+ + A^-$$

$$SH^+ + H_2O \longrightarrow Products + H_3O^+$$

Derive the rate law for the reaction. State when it becomes an example of 'general acid catalysis' and it is 'specific hydrogen ion catalysis'.

- (b) Derive an expression for Langmuir adsorption isotherm. Discuss its limitations.
- (c) In adsorption of hydrogen over a sample of copper, monolayer formation volume per gram of powder was found to be 1.36 cm³ measured at STP. Calculate the specific surface area of copper. Liquid hydrogen has a density of 0.07 g cm⁻³. (4,4,4)

Section C

- 8. (a) Define Quantum Efficiency. What are the reasons for low and high quantum efficiency?
 - (b) The mechanism of photochemical dimerization of Anthracene (A) is given below:

$$A \xrightarrow{hv} A^*$$

$$A^* + A \xrightarrow{k_2} A_2$$

$$A_2 \xrightarrow{k_3} 2A$$

$$A^* \xrightarrow{k_4} A + hv'$$

Derive the expression for rate of formation of dimer.

(c) Adsorption of UV radiations decomposes acetone according to the reaction

$$(CH_3)_2CO \xrightarrow{hv} C_6H_6 + CO$$

The quantum yield of the reaction at 280 nm is 0.2. A sample of acetone absorbs monochromatic radiation at 280 nm at the rate of 7.5×10^{-3} J s⁻¹. Calculate the rate of formation of CO. (4,4,4)

- 9. Write short notes on any three of the following:
 - (a) Enzyme catalysis
 - (b) Electrophoretic effect
 - (c) Photostationary state
 - (d) Quenching of fluorescence (4,4,4)