This	quest	ion paper conta	ains 3 printed pages]		
				Roll No.	
S. No	o. of Q	Question Paper	: 89		
Unique Paper Code			: 222565		G
Name of the Paper			: Physics—III (Electricity, Magnetism and Electromagnetism)		
			(PHPT-404)		·
Name of the Course			: B.Sc. Industrial Chemistry		
Semester			: V		
Dura	tion : .	3 Hours			Maximum Marks: 75
		(Write your Rol	ll No. on the top immedi	ately on receipt of this q	uestion paper.)
	Attempt five questions in all.				
			Question No. 1	is compulsory.	
1.	Attempt any five:				
	(a)	Define self-inductance of circuit. What are its units?			
	(b)	Using Ampere's law calculate field due to a long solenoid.			
	(c)	Prove reciprocity theorem for mutual inductance i.e. $M_{12} = M_{21}$.			
	(d)	What are the charge sensitivity and current sensitivity of Ballistic galvanometer?			
	(e)	What is the physical significance of \overrightarrow{D} .			
	(f)	Define volum	e and surface charge de	nsities.	

Show the work done in moving a charge from one point to another in an electrostatic

(g)

field is path independent.

3×5

- 2. (a) State and prove Gauss's theorem for electrostatics.
 - (b) Using Gauss's law calculate the electric field due to an infinite line charge having a linear charge density λ.
 7,8
- 3. (a) What is an equipotential surface? Show that equipotential surface cut lines of force at right angle.
 - (b) Calculate the field and potential of a spherical charge distribution. 3,12
- 4. (a) State Bio-Savart's Law (or Laplace's law). Using Laplace's Law (or Bio-Savart's Law) calculate magnetic field due to a coil of radius a carrying a current i:
 - (i) at the centre
 - (ii) at the axis of the coil.
 - (b) Prove $\overrightarrow{\nabla} \cdot \overrightarrow{\mathbf{B}} = 0$, explain its physical significance. 12,3
- 5. (a) Obtain an equation of motion of a moving coil Ballistic Galvanometre including the various effects of a damping. State the condition under which behaviour of the coil is:
 - (i) dead beat
 - (ii) oscillatory
 - (iii) critically damped.
 - (b) State Ampere's circuital theorem (Ampere's law) in integral form and hence derive its differential form $\nabla \times \vec{B} = \mu_0 \vec{j}$.

6. (a) State Faraday's law of electromagnetic induction and prove :

$$\vec{\nabla} \times \vec{\mathbf{E}} = \frac{-\partial \vec{\mathbf{B}}}{\partial t}.$$

- (b) Write down the *four* Maxwell's equation in a linear isotropic, homogeneous, dielectric medium and explain their physical significance. Discuss how Maxwell modified Ampere's Law to make it consistent with equation of continuity.

 7,8
- 7. (a) Derive electromagnetic wave equation in free space, using Maxwell's equation. Find the expression for velocity of the wave in free space.
 - (b) Describe how circularly polarized and elliptically polarized wave can be produced from unpolarized light wave.

89