[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 812 E Your Roll No.....

Unique Paper Code : 217603

Name of the Course : B.Sc. (H) Chemistry

Name of the Paper : Organic Chemistry V (CHHT-616)

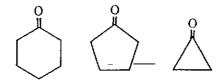
Semester : VI

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

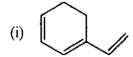
- 2. Answer six questions in all.
- 3. Question No. 1 carries 15 marks.

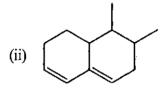

1. Answer any five parts:

- (a) Cis-1, 2-Dichloroethylene shows C=C stretching absorption in its IR spectrum whereas trans-1, 2-Dichloroethylene does not show C=C stretching. Give reason.
- (b) Explain why the absorption bands in UV spectrum are generally broad when compared to the absorption bands in IR spectrum?
- (c) A 60 MHz spectrometer records the signal for a proton at a position 150 Hz downfield from TMS
 - (i) Determine the chemical shift in δ
 - (ii) Predict the shift of the same proton from TMS in Hz for 100 MHz spectrometer
- (d) What are activators and antioxidants used during the process of vulcanization of rubber? Give one example of each.
- (e) What are the characteristic features of a dye?

- (f) Why TMS (Tetramethylsilane) is chosen as reference compound in NMR spectroscopy?
- (g) C=O stretching in IR of acetone comes at 1720 cm⁻¹ while C=0 stretching in acetamide (CH₂CONH₂) comes at 1680 cm⁻¹. Give reason. (5×3)
- 2. (a) Which of the following molecules show spin-spin coupling? Justify your answer. If splitting is observed, give the multiplicity of each kind of proton.
 - (i) C1CH,CH,Br

$$(ii)$$
 Br $C = C$ Br


- (b) Compare the PMR spectrum of ordinary (impure) ethanol and pure ethanol. Give reason for the difference?
- (c) Explain why the aldehydic proton appears much downfield in PMR spectrum? (3×4)
- 3. (a) Salicylic acid shows C=O absorption band at a lower frequency than p-Hydroxybenzoic acid in its IR spectrum? Explain and give the structures.
 - (b) Arrange the following compounds in increasing order of carbonyl absorption frequency. Give reason also:



(c) 1-Butene shows C=C stretching at 1650 cm⁻¹ in its IR spectrum whereas 1,3- Butadiene shows C=C stretching at 1610 cm⁻¹. Explain giving reason.

(3×4)

4. (a) Calculate the λ_{max} (nm) for the following compounds:

Base values for:

Acyclic/ heteroannular diene = 214 nm

Homoannular diene = 253 nm

Addition for each substituent:

Alkyl substituent or ring residue = 5 nm

Exocyclic double bond = 5nm

Double bond extending conjugation = 30 nm

- (b) Identify the geometric isomers of stillbene (C_6H_5 -CH=CH- C_6H_5) from their λ_{max} values of 294 nm and 274 nm giving reason for the assignment?
- (c) Define bathochromic and hypsochromic shifts? Predict the shift in λ_{max} value of phenol when its UV spectrum is first recorded in neutral and then in alkaline medium? Give reasons for the answer. (3×4)
- 5. (a) Give one synthesis of Methyl Orange? Why is it red at a pH below 3.1 and yellow above pH 4.4. Explain with the help of suitable structures.
 - (b) Write the three possible structures that arise out of different ways in which two Isatin units may link to form indigo (M.F.= $C_{16}H_{10}N_2O_2$). Give the reaction that establishes the correct linkage and explain.

- (c) Coupling of diazonium salt with phenol is favoured in mildly alkaline medium while coupling of diazonium salt with aniline is favoured in mildly acidic medium. Give reasons. (3×4)
- 6. (a) Give the mechanism involved when vinyl chloride is polymerised in presence of benzoyl peroxide?
 - (b) How is polyester synthesised. Also give the synthesis of its monomer units?
 - (c) List the following group of monomers in order of decreasing ability to undergo anionic polymerization. Give reason for your answer?

$$CH_{2}=CH-CH_{3}$$
 $CH_{3}=CH-CH_{3}$ $CH_{4}=CH-CH_{3}$ (3×4)

7. (a) An organic compound A with molecular formula C₈H₈O gave following spectral data:

UV: λ_{max} 292 nm ϵ_{max} 16

IR shows important bands at 2862(w) and 1722cm⁻¹ (s)

NMR: δ 2.8 (2H, d); 7.27(5H, s); 9.78(1H, t)

Explaining the UV, IR and NMR data, derive the structure of the compound?

- (b) Explain the following terms with example:
 - (i) Mordant dyes

- 8. Write short notes on the following (any three):
 - (a) Biodegradable polymers
 - (b) Synthetic rubber
 - (c) Edible dyes

(1600)