This question paper contains 4+2 printed pages]

S. No. of Question Paper: 813

Unique Paper Code : 217605

E

Name of the Paper : Physical Chemistry-V [CHHT-617]

Name of the Course : B.Sc. (Honours) Chemistry

Semester : VI

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer six questions in all

Question No. 1 is compulsory. Attempt at least *two* questions from each Section. Use of calculators is allowed but they cannot be shared. Logarithmic tables can be provided if required.

Attempt all parts of a question together.

Physical Constants

Planck's Constant 6.626×10^{-34} Js

Velocity of light 3×10⁸ ms⁻¹

Avogadro's Number $6.023 \times 10^{23} \text{ mol}^{-1}$

Mass of Electron $9.109 \times 10^{-31} \text{ kg}$

Nuclear Magneton $5.051 \times 10^{-27} \text{ JT}^{-1}$

Bohr Magneton $9.275 \times 10^{-24} \text{ JT}^{-1}$

Boltzmann Constant $1.38 \times 10^{-23} \text{ JK}^{-1}$

- 1. Attempt any five:.
 - (a) Of which of the following operators is the function $e^{-x^2/2}$ an eigen function?

$$\frac{d^2}{dx^2}$$
, $\frac{d}{dx}$ and $\frac{1}{x}\frac{d}{dx}$.

- (b) Write the Hamiltonian operator for Lithium atom explaining each term.
- (c) Calculate:

$$[\hat{p}_y, \hat{x}].$$

What is the significance of commutation?

- (d) Bond length increases on removing an electron from N₂, but decreases on removing an electron from O₂. Explain.
- (e) How would the microwave spectrum of HCl be affected if bond length was 10 times the actual value?
- (f) What are antistokes? In order to increase the intensity of antistokes in Raman spectrum of a substance, should one heat or cool? Give reason.
- (g) Br₂ microwave inactive but is rotational Raman active. Why?
- (h) The center of esr spectrum of methyl radical occurs at 329.4 mT when spectrometer working at 9.23 GHz is used. Calculate the value of g.

 5×3

3) 813

Section A

- 2. (a) Normalise the function x(a x) over the range $0 \le x \le a$.
 - (b) For a particle confined to move in a box of length L, find the probability of finding the particle in the range $0 \le x \le L/4$ if it is in n = 1 and n = 2 states.

(c) Draw
$$R_{2,0}$$
, $R_{2,0}^2$ and $r^2 R_{2,0}^2$ versues r for H atom. 4,6,2

- 3. (a) Naphthalene may be considered to be a rectangle of length 0.8 nm and breadth 0.4 nm. Using free electron model calculate the expected wave number of radiation required to give the excited state.
 - (b) Calculate the average distance of 2s electron from nucleus of hydrogen atom given:

$$\phi_{2s} = \left(\frac{1}{32\pi}\right)^{\frac{1}{2}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \left(2 - \frac{r}{a_0}\right) \frac{-r}{e^{2a_0}} \text{ and } \int_0^\infty r^n e^{-ar} dr = \frac{n!}{a^{(n+1)}}$$

- (c) State and explain the Pauli's Exclusion Principle. 5,5,2
- 4. (a) The average energy of H atom calculated on the basis of trial function:

$$\psi = e^{-\alpha x}$$
 is $\langle \mathbf{E} \rangle = \frac{h^2 \alpha^2}{8\pi^2 m} - \frac{e^2 \alpha}{4\pi \epsilon_0}$

where α is a variable parameter. Using variation method, calculate the ground state energy of the H atom. Is this energy greater, lesser or equal to the true energy? Give reason for your answer.

- (b) Show that two eigen functions of a Hermitian operator having different eigen values are orthogonal to each other.
- (c) Calculate expectation value of momentum of a particle described by the function e^{-ikx} where x can extend from 0 to 1. 6,3,3
- 5. (a) The wave functions for Butadiene are:

$$\psi_1 = 0.37\Phi_1 + 0.61\Phi_2 + 0.61\Phi_3 + 0.37\Phi_4$$

$$\psi_2 = 0.61\Phi_1 + 0.37\Phi_2 - 0.37\Phi_3 - 0.61\Phi_4$$

$$\psi_3 = 0.61\Phi_1 - 0.37\Phi_2 - 0.37\Phi_3 + 0.61\Phi_4$$

$$\psi_4 = 0.37\Phi_1 - 0.61\Phi_2 + 0.61\Phi_3 - 0.37\Phi_4$$

Where Φ_i represent the p_z orbital of the *i*th carbon atom and $E_1 \le E_2 \le E_3 \le E_4$. Calculate the bond order between C_1 and C_2 and the charge density on C_3 . Give a schematic sketch of the four wave functions.

- (b) Draw energy level diagram to explain bonding in HF molecule and write the wave functions of the molecular orbitals.
- (c) Write the simplest trial wave function for H₂ molecule using VBT and MOT. Compare them.

Section B

- 6. (a) Derive the expression for V_{max} and spectroscopic dissociation energy.
 - (b) Intensities for Stokes and antiStokes lines are comparable in rotational Raman spectra but in vibrational Raman Stokes lines are more intense. Explain.
 - (c) The infrared spectrum of HCl shows the fundamental and first overtone at 2886 and 5668 cm⁻¹ respectively. Calculate the fundamental vibrational frequency and the anharmonicity constant.
- 7. (a) How will the microwave spectrum of HCl³⁵ be affected if Cl³⁵ was replaced by Cl³⁷?

 Illustrate your answer both qualitatively and quantitatively.
 - (b) The microwave spectrum of DI¹²⁷ shows a series of equally spaced lines, spacing between them being $6.507 \, \mathrm{cm}^{-1}$. Calculate rotational constant B, moment of inertia I and bond length r.
 - (c) IR signal for stretching of C-C bond is at lower frequency than C = C. True or false? Give reason.

 5,5,2
- 8. (a) $r_{eq}^{"}$ and $r_{eq}^{"}$ are internuclear distance of a diatomic molecule in the ground and excited electronic states respectively. Three cases arise:

$$r_{eq} = r_{eq}^{"}, r_{eq} > r_{eq}^{"}$$
 and $r_{eq} >> r_{eq}^{"}$.

Discuss the intensity distribution in absorption spectra of any two cases using Franck-Condon principle along with potential energy diagrams.

- (b) The nuclear g factor for F¹⁹ nucleus is 5.256 (spin 1/2). Calculate the resonance frequency when it is placed in a magnetic field of strength 1 Tesla. Also calculate the relative populations of the two spin states at 298 K.
- (c) Explain the esr spectrum of the 1,4 benzosemiquinone radical anion. 4,4,4
- 9. Write short notes on any three of the following: 3×4
 - (a) Fluorescence
 - (b) Factors controlling width of spectral transitions
 - (c) Larmor precession
 - (d) Bohr correspondence principle.