This question paper contains 4 printed pages.]

1778

Your Roll No.

B.Sc. (Hons.) / I Sem./Computer Sc. A

Paper 103 – Calculus–I (Admissions of 2001 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all questions. All questions carry equal marks.

Use of scientific calculator is allowed.

- 1. If $f(x) = x^2 + 1$, $x_0 = 1$, L = 2, $\epsilon = 0.1$, find $\delta > 0$, satisfying, $|f(x) L| < \epsilon$, whenever $0 < |x x_0| < \delta$.
- 2. If $f(x) = \begin{cases} x+a & x < 1 \\ b & x = 1 \\ \frac{a}{x+1} & x > 1 \end{cases}$

find values of a, b for which f(x) is continuous.

- 3. Verify the hypothesis and conclusion of Rolle's Theorem for the function $f(x) = \sin^2 x + \sin x$, $0 \le x \le \pi$.
- 4. Obtain Mclaurim's series expansion of $f(x) = \log (1+x)$.
- 5. Prove that

$$\lim_{n \to \infty} n^{1/n} = 1 \text{ and } \lim_{n \to \infty} \frac{1 + 2^{1/2} + \dots + n^{1/n}}{n} = 1.$$

- 6. State Cauchy Integral Test for convergence of a positive term series. Apply it to discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^p} (p > 0)$.
- 7. Discuss the Absolute and conditional convergence of the series

(i)
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n-1}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{x^n}{n!} (x > 0).$$

8. For what value of α , will:

$$\lim_{x \to 0} \frac{\tan \alpha^2 x + 8 \tan \alpha x}{\sin 4x} = 1 ?$$

9. Graph the equation:

$$y = 5x^{2/5} - 2x.$$

Include the coordinates of any local extreme points and inflection points.

10. The velocity of a particle moving in space is

$$\frac{\overrightarrow{dr}}{dt} = (\cos t) \hat{i} - (\sin t) \hat{j} + \hat{k}.$$

Find the particle's position as a function of t if $r = 2\hat{i} + \hat{k}$ when t = 0.

11. Assuming the validity of differentiation under integral sign, evaluate the following integral:

$$\int_{0}^{\infty} e^{-\alpha x} \frac{\sin \beta x}{x} dx \quad (\alpha \ge 0).$$

12. (a) Show that the function $f(x, y) = \frac{x^4}{x^4 + y^2}$ has no limit as $(x, y) \rightarrow (0, 0)$.

(b) Find
$$\frac{\partial^2 w}{\partial x \partial y}$$
 if $w = xy + \frac{e^y}{y^2 + 1}$.

13. Obtain the linearization L(x, y, z) of the function f(x, y, z) = xz - 3yz + 2

at the point (1, 1, 2). Also find an upper bound for the magnitude of the error E in the approximation $f(x, y, z) \approx L(x, y, z)$ over the region

R: $|x-1| \le 0.01$, $|y-1| \le 0.01$, $|z-2| \le 0.02$.

- 14. Find the points on the curve $x^2 + xy + y^2 = 1$ in the xy-plane that are nearest to and farthest from the origin.
- 15. Find the directions in which $f(x, y) = \frac{x^2}{2} + \frac{y^2}{2}$
 - (a) increases most rapidly at the point (1, 1).
 - (b) decreases most rapidly at the point (1, 1).
 - (c) What are the directions of zero change in f at (1, 1)?