FF-1	question					
11 640	ALLOADE AM		acetorne.	_	Met Mtod	***
1 1111	111122111111	naner	COMPANION	-	111111111111111111111111111111111111111	HAVES
* 1113	d dcomon	DUDGE	COTTOMITION	-	DITTION	Pugue

			-		 		
Dall Na			, ,		1		Ι.
Roll No.							
		•					

S. No. of Question Paper: 8308

Unique Paper Code

: 235166

C

Name of the Paper

: MAPT-101: Calculus and Matrices

Name of the Course

: B.Sc. (Hons.) Computer Science/

B.Sc. Mathematical Sciences/Physical Sciences Part I

Semester

7

: I

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two questions from each Section.

Use of non-programmable scientific calculator is permitted.

Section I

- 1. (a) Show that the set $S = \{(1,3), (1,-1)\}$ forms a basis for \mathbb{R}^2 .
 - (b) Solve the system of equations:

$$x + y + z = 6$$
$$2x + 3y + 4z = 20$$
$$x + y = z$$

(c) Examine if the set $S = \{(a, b, 0) : a, b \in R\}$ is a subspace of R^2 . If yes, justify and give geometrical interpretation of the subspace.

4,4,4

- 2. (a) Is the transformation defined by T(x, y, z) = (x y, y + z) linear? Justify.
 - (b) Find the characteristic equation, eigen values and eigen vector (corresponding to one of

them) for the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{bmatrix}$$
.

- (c) Using elementary row operations, find the inverse of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$. 4,4,4
- 3. (a) Find the image of a triangle with vertices (1, 1), (3, 1) and (2, 3) under a dilation of factor 2.
 - (b) Reduce the matrix $\begin{bmatrix} 2 & 4 & 6 \\ -1 & 4 & -2 \\ -1 & 10 & -1 \end{bmatrix}$ to triangular form by elementary row operations and hence determine its rank.
 - (c) Express the vector (3, 7) as a linear combination of the vectors (1, 3) and (0, 1) of R².

Section II

- 4. (a) Discuss the convergence of the following sequences:
 - (i) $\langle (-1)^n \rangle$

(ii)
$$\left\langle \frac{\cos^2 n}{3^n} \right\rangle$$
.

(b) Sketch the graph of the function $y = 1 - \cos x$, $x \in [0, 2\pi]$. Mention the transformations used at every step.

- (c) A body at temperature 72°F is taken outdoors, where the temperature is 20°F. After 5 minutes, the temperature of the body is 55°F. How long will it take the body to reach a temperature of 43°F?

 6,6,6
- 5. (a) If $y = \ln(x + \sqrt{1 + x^2})$, prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$.
 - (b) Assuming the possibility of expansion, write the Maclaurin's series expansion up to at least five terms of the function $f(x) = e^{2x}$.
 - (c) If $v = \log(x^2 + y^2 + z^2)$, prove that :

$$x\frac{\partial^2 v}{\partial v \partial z} = y\frac{\partial^2 v}{\partial z \partial x} = z\frac{\partial^2 v}{\partial x \partial y}.$$
6,6,6

- 6. (a) Find the *n*th derivative of $y = \frac{1}{(x^2 + 1)}$.
 - (b) Verify that the function u(x,t) = Px + Q, where P and Q are constants, is a solution to the heat equation.
 - (c) Find the limit of the following sequences:

$$(i) \cdot \left\langle \frac{\log n}{n} \right\rangle$$

(ii)
$$\left\langle \left(1+\frac{2}{n}\right)^n\right\rangle$$
. 6,6,6

Section III

- 7. (a) If $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma$, prove that : $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma).$
 - (b) Find the equation of a circle described on the line joining the points given by -1-3i and 5+7i as diameter. 4.3½
- 8. (a) Use De Moivre's Theorem to solve the equation $z^5 1 = 0$.
 - (b) Show that the points 1 + 6i, 3 + 10i, and 4 + 12i are collinear. $4.3\frac{1}{2}$
- 9. (a) Form an equation of lowest degree with real coefficients having 2 + 3i and 3 + 5i as two of its roots.
 - (b) Find all the values of $(1+i)^{2/3}$. 4,31/2