This question paper contains 4 printed pages]

S. No. of Question Paper: 8826

Unique Paper Code

: 234103

C

Name of the Paper

: CSHT-102 Discrete Structures

Name of the Course

: B.Sc. (Hons.) Computer Science Part I

Semester

: I

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Parts of a question must be attempted together.

Part A (of 35 marks) is compulsory. Attempt any four questions from Part B.

Part A.

(Compulsory).

1. (a) State whether Master's Theorem is applicable in each of the following. Solve the recurrence if it is applicable, else justify your answer:

(i)
$$T(n) = 4T(n/2) + n^2 \lg n$$

$$(ii) \quad T(n) = 4T(n/2) + n$$

4

(b) Show that 2^n is $O(3^n)$ but 3^n is not $O(2^n)$.

3

2. (a) Solve the recurrence relation. Find the total solution for the difference equation:

$$a_r - 7 a_{r-1} + 10 a_{r-2} = 3^r$$
, given that $a_0 = 0$ and $a_1 = 1$.

(b) Determine the discrete numeric function corresponding to the generating function:

$$A(z) = \frac{32 - 22z}{2 - 3z + z^2}.$$

[2)	8826

3

3

4

- (a) Among 50 students in a class, 26 got A in the Mathematics and 7 students got an A in both Mathematics and English. How many students did not get an A in English?
 (b) Find the reflexive closure of the following relation:
 R = {(3, 4), (4, 3), (4, 4), (5, 4)} on the set A = {3, 4, 5}.
 - (c) Suppose repetitions are not permitted:
 - (i) How many 3-digit numbers can be formed from the digits 1, 3, 5, 8, 9?
 - (ii) How many of them are between 4000 and 8000?
 - (iii) How many of them are even?
- 4. (a) Show that $\neg P$ is tautologically implied by $\neg (P \land \neg Q)$, $(\neg Q \lor R)$, $\neg R$.
 - (b) Draw an Acquaintanceship graph of 7 students in a college. Assume that each student knows atmost 3 and at least 1 student. What do the vertices and edges represent?
 - (c) Find the number of edges in a full binary tree with 50 internal nodes.

Part B

(Attempt any four questions from Part B)

5. (a) Prove by Mathematical Induction that, for $n \ge 1$:

$$1.2 + 2.3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}.$$

(b) Given $A = \{a, b, c, d\}$. Consider the relation R on A:

$$R = \{(a, a), (b, b), (b, c), (c, b), (d, b), (d, d)\}$$

Is R Symmetric? Is it Transitive? Give reasons.

(c) Assume that classes are not held on weekends, show that in a set of six classes there must be two that meet on the same day. Justify your answer using the Pigeonhole principle.

6. (a) Determine whether each of these functions from {1, 2, 3, 4} to itself is one-to-one and/or onto:

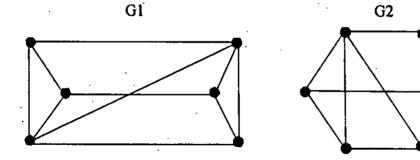
(i)
$$f(1) = 2$$
, $f(2) = 1$, $f(3) = 3$, $f(4) = 4$

(ii)
$$f(1) = 4$$
, $f(2) = 2$, $f(3) = 4$, $f(4) = 3$.

- (b) In how many ways can 2 numbers be selected from the integers 1-100, so that their sum is an even number?
- (c) Show that C $(2n, 2) = 2 C(n, 2) + n^2$
- 7. (a) Show the equivalence:

$$(P \lor Q) \land (\neg P \land (\neg P \land Q)) \Leftrightarrow (\neg P \land Q).$$

- (b) Consider the predicate P(x): x is less than equal to 4. Which of the following statements would be true for the universe of discourse $\{-2, -1, 3, 4, 5, 6\}$? How?
 - (i) $(\exists x) P(x)$
 - (ii) (x)P(x).
- (c) Given the value of $P \to Q$ is false, determine the value of $(\neg P \lor \neg Q) \to Q$.
- 8. (a) Are the graphs G1 and G2 isomorphic? Explain.



- (b) Prove the Euler's formula for Planar graphs.
- (c) Define a spanning tree of a graph. Draw a spanning tree of the graph G1 of Q. No. 8(a). [2]

P.T.O.

- 9. (a) Simplify the expression $\sum_{k=1}^{n} (2k-1)$.
 - (b) Use Bubble Sort to sort the list 3, 1, 5, 7, 4. Show the list obtained at each step.
 - (c) Show that $3x^2 + x + 1$ is $\Theta(x^2)$, by finding the constants k, C_1 , C_2 .
- 10. (a) Determine a * b in the following:

$$a_r = \{1, 0 \le r \le 2 \quad b_r = \{1, 0 \le r \le 2 \}$$
 $\{0, r \ge 3 \quad \{0, r \ge 3 \}$

- (b) Use Substitution Method to show that the solution of $T(n) = T(\lfloor n/2 \rfloor) + 1$ is $O(\lg n)$.
- (c) Determine the particular solution for the difference equation:

$$a_r - 4a_{r-1} + 4 \ a_{r-2} = (r+1) \cdot 2^r$$