This question paper contains 4+1 printed pages]

Your Roll No.

1972

Paper 103-CALCULUS-I

(Admissions of 2001 to 2010)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any ten questions.

Each question carries 71/2 marks.

1. It can be shown that the inequalities:

$$\frac{1}{2} - \frac{x^2}{24} < \frac{1 - \cos x}{x^2} < \frac{1}{2}$$

hold for values of x close to zero. What, if anything, does this tell-you about:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} ?$$

Give reasons for your answer.

(2) 1972

2. The approximation:

$$\sqrt{1+x}=1+\frac{x}{2}$$

is used when x is small. Estimate the error when |x| < 0.01.

3. Find the values of x for which the geometric series :

$$\sum_{n=0}^{\infty} (-1)^n (x+1)^n$$

converges. Also, find the sum of the series for those values of x.

4. Define an absolutely convergent series. Test the following series for absolute convergence:

$$\sum_{n=1}^{\infty} (-1)^n \frac{(n+1)^n}{(2n)^n}.$$

5. For the function $f(x) = \sqrt{x+1}$, $x_0 = 0$ and $\epsilon = 0.1$, find L and a number $\delta > 0$ such that for all x satisfying $0 < |x - x_0| < \delta$, the inequality $|f(x) - L| < \epsilon$ holds.

6. Show that the function:

$$f(x) = 2x^4 - x - 1$$

has exactly one zero in the interval [-1, 0].

7. Graph the function:

$$f(x) = |x^2 - 1|.$$

Include the coordinates of local extreme points and inflexion points if any.

8. Evaluate:

(i)
$$\lim_{x \to 0} \left(\frac{e^x - 1 - x - \frac{x^2}{2}}{x^3} \right)$$

(ii)
$$\lim_{x \to 2} \left(\frac{x^5 - 32}{x^3 - 8} \right)$$
.

 Show that a closed cylindrical can of fixed volume has minimum total surface area if its height and diameter are equal. 10. Given :

$$\frac{\overrightarrow{dr}}{dt} = 2t\hat{i}t + \frac{1}{(t+1)^2}\hat{j} - e^t\hat{k}$$

and
$$r(0) = \hat{i}$$
,

find
$$\vec{r}(t)$$
.

II. Show that the function:

$$f(x, y) = \frac{2x^2y}{x^4 + y^2}$$

has no limit as (x, y) approaches (0, 0).

12. Find $\frac{\partial w}{\partial x}$ at the point (x, y, z) = (2, -1, 1) if

$$w = x^2 + y^2 + z^2,$$

$$z^3 - xy + yz + y^3 = 1$$
.

and x and y are the independent variables.

13. Find all the local maxima, local minima, and saddle points of the function:

$$f(x, y) = x^2 + 3xy + 3y^2 - 6x + 3y - 6.$$

(5) 1972

14. Find the point P(x, y, z) closest to the origin on the plane 2x - y = z - 5 = 0.

15. Find a quadratic approximation of $f(x, y) = \sin x \sin y$ at the origin. Estimate the error in the approximation if $|y| \le 0.1$ and $|y| \le 0.1$.

Or.

Assuming the validity of differentiation under the integral sign, show that :

$$\int_{0}^{\pi/2} \frac{\log(1+\cos\beta\cos y)}{\cos y} \, dy = \frac{\pi^2 - 4\beta^2}{8}.$$