This question paper contains 4 printed pages.]

1790

Your Roll No.

B.Sc. (Hons.) Computer Sc. / III Sem. A Paper 303 – Algebra

(Admissions of 2001 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all questions. All questions carry equal marks. Use of scientific calculator is permitted.

- 1. Show that the set $C = \{1, w, w^2\}$ where w is an imaginary cube root of unity, is a group with respect to multiplication.
- 2. Show that the mapping ϕ (a + ib) = a ib is an isomorphism of the group of complex numbers \mathbb{C} under addition. Show that ϕ preserves complex multiplication as well that is $\phi(xy) = \phi(x) \phi(y)$ for all x and y in \mathbb{C} .

- Let f be a morphism from ring to ring R'. Prove that kerf is an additive subgroup of R. Also show that if a∈ kerf then ra∈ kerf for all r∈R.
- 4. Let A be a linear transformation whose matrix is $\begin{pmatrix} 3 & 0 \\ 4 & 2 \end{pmatrix}$. Find a linear transformation D with diagonal matrix and find a linear transformation P such that $A = PDP^{-1}$. Also calculate $\begin{pmatrix} 3 & 0 \\ 4 & 2 \end{pmatrix}^{6}$.
- 5. Show that the following set of elements in IR³ form subspace,

$$\{(x, y, z) | x = y \text{ and } 2y = z\}.$$

Give an example which shows that union of two subspaces may not be a subspace.

6. Define a convex set of a vector space. If S be a convex. set in vector space V and $w \in V$, show that.

$$w + S = \{w + v | v \in S\}$$

is a convex.set.

- 7. Let A be a set of books. Let R₁ be a binary relation on A such that (a, b) is in R₁ if book 'a' costs more and contains fewer pages than book 'b'. In general, is R₁ reflexive? Symmetric? Antisymmetric? Transitive?
- 8. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear mapping for which F(1, 2) = (2,3) and F(0,1) = (1, 4), Find a formula for F(a, b).
- 9. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping defined by F(x, y) = (x y, x 2y). Is F invertible? If yes, find F^{-1} .
- 10. Let V be the space generated by functions $f_1(t) = \sin t$, $f_2(t) = \cos t$, let D : V \rightarrow V be the mapping such that D(f) = $\frac{d^2 f}{dt^2}$. Show that D is linear and describe kernel of D.
- 11. Find the dimension of the set of solutions of the following system of equations and determine this set in IR³

$$2x + y + z = 1$$
$$y - z = 0.$$

- 12. State and prove Bessel inequality.
- 13. Let δ consists of the following vectors in \mathbb{R}^4 :

$$u_1 = (1, 1, 0, -1), u_2 = (1, 2, 1, 3), u_3 = (1, 1, -9, 2),$$

 $u_4 = (16, -13, 1, 3)$

Show that δ is an orthogonal basis of \mathbb{R}^4 . What is the dimension of S^1 ?

14. Find the area of the parallelogram such that three corners of the parallelogram P are given by (-3, 2), (1, 4) and (-2, -7).

Let $L:\, {\rm I\!R}^{\,2} \to {\rm I\!R}^{\,2}$ be a linear map defined by

$$L\left(x,\,y\right) =(x+2y,\,x-y).$$

Find the area of L(P).

15. Find the maximum and minimum of the function

$$f(x, y) = 3x^2 + 5xy - 4y^2$$

on the unit circle.