This question paper contains 4+2 printed pages]			
Your Roll No			
1978			
B.Sc. (Hons.) Computer Sc./III Sem. C			
Paper 303-—Algebra			
(Admissions of 2001 and onwards)			
Time: 3 Hours Maximum Marks: 75			
(Write your Roll No. on the top immediately on receipt of this question paper.)			
Attempt all the seven questions from Section A and			
any four questions from Section B.			
Section A			
1. Define:			
(i) A monoid			
(ii) A normal group			
(iii) A ring			

Illustrate these definitions with an example each.

5

- 2. If $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$ what is :
 - (i) A · B
 - (ii) Is A poset under a partial order "IS LESS

 THAN".
 - (iii) Is this poset in (ii) a chain? (Under "IS LESS THAN")
 - (iv) Is the set A a group with respect to binary composition* as ordinary multiplication, jusitfy ?
 - (v) Is the set A a ring with respect to two binary compositions +, . as the ordinary addition and multiplication of real nos ? Justify.
- 3. Show that the set of all elements (x, y, z) in \mathbb{R}^3 such that x + y = 3z forms a sub-space of \mathbb{R}^3 .

- 4. (i) Determine whether the matrix $A = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$ is positive definite.
 - (ii) Show that for the above $A = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$ trace $(A^2) \ge 0$ equality = 0 holds only when each entry of A is zero.
- 6. What is the dimension of (the vector space of): 5
 - (i) Upper triangular $n \times n$ matrices over **R**.
 - (ii) Symmetric 3×3 matrices over \mathbb{R} .

7. Find the eigen values and corresponding eigen vectors of the

Section B

- 8. (a) Define a parallelogram spanned by two distinct vectors v_1 and v_2 of a vector space over reals. Draw the parallelogram spanned by the vectors (2, -1) and (1, 3) in $\mathbb{R}^2(\mathbb{R})$.
 - (b) Show that the set of all $(x, y) \in \mathbb{R}^2(\mathbb{R})$ such that x = y forms a subspace of $\mathbb{R}^2(\mathbb{R})$.
- 9. (a) Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 7 \\ 2 & 4 & -1 \end{pmatrix}$.
 - (b) Find the rank of the matrix $\begin{pmatrix} -1 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 7 \end{pmatrix}$.

10. (4	a)	Let V be the subspace of functions generated by tv	vo
		functions $f(t) = t$ and $g(t) = t^2$. Find an orthonorm	ıal
		basis for V.	5
((b)	Show that the vectors $(1, 1, 1)$ and $(0, 1, -2)$ are linear	rly
		independent over reals R.	5
11.	(a)	Express the vector (4, 3) in terms of vectors (2, 1) a	ind
		(-1, 0) as a linear combination. Are the vectors (2,	1)
		and (4.0) lindependent over R?	5
	(b)	Show that SL(2, R) is a normal subgroup of the group	oup
		GL(2, R).	5
12.	(a)	If H and K are two subgroups of a group G, t	then
		$H \cap K$ is also a subgroup of G .	5
	(b)	Show that the set $P_2(x)$ of all real polynomials	in x
		of degree at most 2 is a vectorspace	over
		reals.	5

13. (a) If $\theta \in \mathbb{R}$, then the matrix $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ always has an eigen vector in \mathbb{R}^2 .

(b) Is the map $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x, z) linear? Find the image of $(1, 0, -1) \in \mathbb{R}^3$. 5

1978 6 200