1801

Your Roll No.

B.Sc. (Hons.) / V Sem./Computer Sc. A

Paper 504: Numerical Analysis and Scientific Computing

(Admissions of 2001 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all questions. Parts of a question must be answered together. Use of non-programmable scientific calculator is allowed.

- 1. (a) Construct the taylor series for the function $f(x) = \sin^{-1} x, |x| < 1$
 - and bound the error when truncated after n terms.

5

(b) Assume that $x_A = 0.786$ has three significant digits with respect to x_T . Bound the relative error in x_A . For $f(x) = \frac{1}{\sqrt{1-x}}$ bound the error and relative error in $f(x_A)$ with respect to $f(x_V)$.

2. (a) Assume f(x) is twice continuously differentiable as [a, b], f(a) < 0, f(b) > 0, f'(x) > 0 and f''(x) < 0, $\forall x \in [a, b]$. Then prove that the iterates x_n are strictly increasing to α and iterates z_n are strictly decreasing to α . Also, show that

$$\lim_{n \to \infty} \frac{x_{n+1} - z_{n+1}}{(x_n - z_n)^2} = \frac{f''(\alpha)}{2f'(\alpha)}.$$

(b) Apply Newton's method to the function

$$f(x) = \begin{cases} \sqrt{x-a} & x \ge a \\ -\sqrt{a-x} & a \ge x \end{cases}$$

with the root x = a. What is the behavior of the iterates? Do they converge and if so, at what rate?

- (a) Consider -h, o, h as nodal points and ∈ the maximum value of the rounding error in the function evaluations. Show that the effect of these rounding errors on the quadratic interpolation error is bounded by 1.25 ∈ for -h ≤ x ≤ h.
 - (b) Prove that $f[x_0, x_1, ... x_n] = \frac{f^n(l_n)}{|\underline{n}|}; \forall n$

Where $l_y \in X \{x_0, x_1...x_n\}$ and $X \{x_0, x_1, ...x_n\}$ is the smallest closed internal containing $x_0, x_1, ..., x_n$.

2

- 4. (a) Obtain the asymptotic error formula for Simpson's 1/3 rule.
 - (b) Evaluate the integral $I = \int_0^1 \frac{dx}{1+x}$ using trapezoidal rule by taking n = 4. Evaluate the actual error and an upper bound of the error.
 - (c) Evaluate the integral $I = \int_{1}^{2} xe^{-x^{2}} dx$ using Gaussian Quadrature (n = 2). Compare this solution with exact solution. 3+1
- 5. (a) Find the interval which contains the eigen values of the symmetric matrix $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 5 & 2 \\ 2 & 2 & 3 \end{bmatrix}$ using Gerschgorin bounds.
 - (b) Find the linear least square approximation to $f(x) = \sin x$ on $\left[0, \frac{\pi}{2}\right]$ with respect to the weight function W(x) = 1. Compare the error with linear Taylor's polynomial about $x_0 = \pi/4$.
 - (c) Write the codes in MATLAB/MATHEMATICA/MAPLE to solve the following integral using Simpson's 1/3 rule $\int_{1}^{2} (x^2 + x) dx$.

6. (a) Solve the following system of equations by using Jalobi method

$$6x_1 - 2x_2 + x_3 = 11$$

$$x_1 + 2x_2 - 5x_3 = -1$$

$$-2x_1 + 7x_2 + 2x_3 = 5$$

(Perform 3 iteration) with $X_0 = [0, 0, 0]'$.

(b) Given A =
$$\begin{bmatrix} 5 & -5 & 7 \\ -4 & 2 & -4 \\ -7 & -4 & 5 \end{bmatrix}$$

Calculate Frobenius norm $||A||_f$, $||A||_{\infty}$ and $||A||_1 = 3$

(a) Use Rayleigh-Ritz method to approximate the solution of

$$y^{11} = 3x + 1,$$

$$y\left(0\right) =0$$

$$y(1) = 0$$

using a quadratic in x as the approximating function.

(b) Determine the value of y where x = 0.1 & x = 0.2given $y^1 = -2x - y$ y(0) = -1

using modified Euler's method.

(c) For the differential equation $\frac{dy}{dx} = 1 + y^2$

4

satisfying y(0) = 0, calculate y(0.2), y(0.4) and y(0.6) using Euler's method. Using these values evaluate y(0.8) with the held of Tdam-Moulton method.

4

5