6599

Your Roll No.

B.Sc. (Hons.) Computer Science / V Sem. B

Paper 504: Numerical Analysis and Scientific Computing

(Admissions of 2001 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt All questions. Parts of a question must be answered together. Marks are indicated against each question. Use of Non-programmable scientific calculator is allowed.

1. (a) Derive the following inequalities.

(i)
$$|e^x - e^z| \le |x - z|$$
, for all x, $z \le 0$

(ii)
$$py^{p-1}(x-y) \le x^p - y^p \le px^{p-1}(x-y)$$

for $0 \le y \le x$, $p \ge 1$. (5)

(b) Define order of convergence of an iteration. Find the order of convergence for

$$x_{n+1} = \frac{x_n(x_n^2 + 3a)}{3x^2 + a}, n \ge 0$$

to compute \sqrt{a} .

(5)

P.T.O.

2. (a) Give the geometric interpretation of secant method.
Use secant method to find the smallest positive root of the equation:

$$x^4 - x - 10 = 0$$
,
correct to three decimal places. (5)

- (b) Consider x_0 , x_1 as the nodal points and \in the maximum value of the rounding error in the function evaluations. Show that the effect of these rounding errors on the linear interpolation is bounded by \in for $x_0 \le x \le x_1$. (5)
- 3. (a) For $K \ge 0$, prove that

$$f[x_0, x_1 - - , x_K] = \frac{1}{|K|} \nabla^K f_K.$$
 (5)

(b) Find the minimum number of equal length subinterval needed to approximate

$$\int_{0}^{2} x \ e^{x} \ dx$$

to an accuracy of atleast $\frac{1}{3} \times 10^{-6}$ using Trapezoidal rule. (5)

(c) Evaluate

$$1 = \int_0^{\pi/2} \sin x \, dx$$

using Gaussian-quadrature for n = 2. (5)

- 4. (a) Obtain a linear polynomial approximation to the function f(x) = ℓnx on the interval [1,2] using the least square approximately with weight W(x) = 1.
 - (b) Solve the following system of linear equation using Crout reduction:

$$x + y + z = 1$$

 $4x + 3y - z = 6$
 $3x + 5y + 3z = 4$ (5)

(c) Define a diagonally dominant matrix. Solve the following system of equation using Jacobi method:

$$6x - 2y + z = 11$$

$$x + 2y - 5z = -1$$

$$-2x + 7y + 2z = 5$$

(Show three iterations).

(5)

5. (a) For the differential equation

$$y' = 1 + y^2$$
, with $y(0) = 0$,

the starting values are

$$y(0.2) = 0.2027$$
, $y(0.4) = 0.4228$, $y(0.6) = 0.6841$.

Use Adams – Moulton method to advance the solution to x = 0.8. (5)

P.T.O.

(b) Solve the following equation with boundary points (0,0) and (2,3.5) using the Rayleigh-Ritz method:

$$y'' + y = 3x^2 \tag{5}$$

6. (a) Compute the Frobenius norm and column norm for

the matrix
$$A = \begin{pmatrix} 5 & -5 & -7 \\ -4 & 2 & -4 \\ -7 & -4 & 5 \end{pmatrix}$$
 (2)

(b) Write the codes in MATLAB/MATHEMATICA/
MAPPLE for evaluating

$$\int_0^2 (3x^2 - 2x) dx$$
using Trapezoidal rule. (3)

(c) Find the dominant eigen value and the corresponding eigen vector by the power method

$$A = \begin{bmatrix} 2 & 3 \\ 6 & 5 \end{bmatrix} \tag{5}$$

(d) Derive the expression for f''(x) using the method of undetermined coefficients. (5)