1803

Your Roll No.

B.Sc. (H) Computer Science / VI Sem. A

Paper 601: Theory of Computation (For Admissions of 2001 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all questions.

Parts of a question must be answered together.

- 1. (a) Assume Alphabet $\Sigma = \{a, b\}$ unless stated. Consider the language S_{i}^{*} , where $S = \{ab, ba\}$
 - (i) Write out all the words in S* that have seven or fewer letters.
 - (ii) Can any word in this language contain the substring aaa or bbb?
 - (iii) What is the smallest word not in S*?

4+1+1

(b) Write a regular expression for the set of all words with no two consecutive a's.

- (a) Build a DFA that accepts only those words that have even numbered occurrences of substring ab.
 - (b) Construct FA for the language $(FA_1 + FA_2)$ where FA_1 and FA_2 are given below.

- (c) Design a DFA that starts with a and has odd number of a's or starts with b and has even number of b's.
- 3. (a) Prove that the set of regular language is closed under interaction.
 - (b) For the pair of regular language Find
 systematically a regular expression and a FA that
 define L₁∩L₂

$$L_1 = (a + b) b (a + b)^*$$
 $L_2 = b (a + b)^*$

4. Convert NFA into DFA.

5. (a) Convert TG into Regular expression

(b) Use pumping lemma to show that the following language is non-regular

$$\{a^nb^{2n} \text{ for } n>1\}.$$

6. (a) Consider CFG

$$S \rightarrow XYX$$

$$X \rightarrow aX|bX|_{\wedge}$$

$$Y \rightarrow bbb$$

(b) Obtain a CFG to generate a language of all non-

palindromes over
$$\Sigma = \{a, b\}.$$

7. Design a PDA to accept the following language over $\Sigma = \{0, 1\}$

$$\{a^nb^n \mid n = 0 \ 1 \ 2 \dots\}$$

3

5

8. (a) Design a Turing Machine which accepts the language

L (μ) = { $a^n b^n c^n | n \ge 1$ }

- (b) Prove that the recursive languages are closed under complementation.
- (c) Consider $\Sigma = \{0 \ 1\}$, design a Turing Machine that multiplies the value of the input string over Σ by 2.
- (d) Describe Universal Turing Machine. 3

1/3 6

le a o

to the Wallet And Co.

1803 4 700