This question paper contains 4+2 printed pages]

Your Roll No.

1959

B.Sc. (Hons.) Computer Science/VI Sem. C

Paper 605 (i)—-ARTIFICIAL INTELLIGENCE

(Admissions of 2001 to 2010)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No-on the top immediately on receipt of this question paper.)

All questions in Section A are compulsory.

Attempt any four questions in Section B.

Section A

- When do you call a machine intelligent? Name the criteria used for determining whether a machine is intelligent or not?
 - (b) Explain the physical symbol system hypothesis? 3
 - (c) Differentiate Depth first search and Best first search with the help of an example.

(2) 1959

3

	(d)	Express the sentences given below into conceptual
		dependency structure . 4
		(i) Sushil ate soup with a spoon
		(ii) Rita gave Sita a bunch of flowers.
2	(a)	Write the output of the following LISP statements: 4
		(i) cadadr '(a (b e) d)
		(ii) reverse '(a(b c (d)) e f)
	•	(iii) member 'c '(a (b (c))d e)
		(iv) (lessp 22 44 17 9 20)
	(b)	Transform the following into CNF: 3
		(i) P \vee (\sim P & Q & R)
		(ii) $(\sim P \& Q) \lor (P \& \sim Q) \& S$
	(c)	Draw a pictorial definition for the linguistic variable AGE
		giving your own subjective values for AGE variables and

their values.

3.	(4)	Write a recursive LISP function to find the n th term of		
		a Libonacci series, where the number n is to be passed		
		as an argument to a function.		
	(h)	Give the cons-cell representation of the following		
		list . 6		
		(a (b (c) (d (e) f) g h) i (j)).		
Section B				
l,	(a)	Describe the various problems associated with Hill		
		climbing method and explain them.		
	(b)	Write a short note on Neural Network Architecture: 4		
5.	(a)	How many types of non-deductive inference are there ?		
		Explain. 4		

(c) Develop a parse tree for the sentence "Raja slept on the sofa".

Give an example of non-monotonic reasoning and describe

(b)

it also.

3

- 6. (a) Write a script for going to a movie. 4
 - (h) Describe the admissibility condition for the A* algorithm.

 In what situations A* will give an optimal solution?

 Give appropriate examples. 2+2+2
- 7. (a) Consider the following axioms: 4+3
 - (i) Every boy or girl is a child.
 - (ii) Every child gets a doll or a train or a lump of coal.
 - (iii) No body gets any doll.
 - (iv) No child who is good gets any lump of coal.
 - (★) (Conclusion) If no child gets a train, then no boy is good.

Prove that given conclusion using resolution technique.

(5) 1959

(b) Define the sentences \$1, \$2 and \$3. \$1 = P, \$2 = Q and \$3. \$1 = P. \$2 = Q and \$3. \$3 = Q and \$3. \$4 = Q and \$4 = Q

$$P(W1) = 1/4$$
, $P(W2) = 1/8$,

$$P(W3) = 1/8$$
 and $P(W4) = 1/2$.

- 8. (a) Define a production system. What type of production system is appropriate for designing a chemical synthesis problem and why?
 2+3
 - (b) Transform the following into dausal form: 5

$$\exists x \ \forall y (\forall z \ P(f(x), \ y, \ z)) \rightarrow (\exists u \ Q(x, \ u) \ \& \ \exists v \ R(y, \ v)).$$

: 6 }

1959

9. Write short notes on the following:

10

- (a) Uninformed Search
- (b) Heuristic Search
- (c) Mean End Analysis
- (d) Resolution Principle.